Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2014 (2014), Article ID 827896, 4 pages
http://dx.doi.org/10.1155/2014/827896
Research Article

Comparative Analysis of Changes of Myocardial Angiogenesis and Energy Metabolism in Postinfarction and Diabetic Damage of Rat Heart

FSBI “RI Cardiology” SB RAMS, 111a Kievskaya Street, Tomsk 634012, Russia

Received 20 October 2013; Accepted 6 January 2014; Published 12 February 2014

Academic Editor: Xiuping Chen

Copyright © 2014 Sergey A. Afanasiev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Ashrafian, C. Redwood, E. Blair, and H. Watkins, “Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion,” Trends in Genetics, vol. 19, no. 5, pp. 263–268, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. V. A. Saks, T. Kaambre, P. Sikk et al., “Intracellular energetic units in red muscle cells,” Biochemical Journal, vol. 356, part 2, pp. 643–657, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Weiss and B. Hiltbrand, “Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart,” Journal of Clinical Investigation, vol. 75, no. 2, pp. 436–447, 1985. View at Google Scholar · View at Scopus
  4. S. A. Afanasiev, D. S. Kondratyeva, M. V. Egorova, and S. V. Popov, “A comparative study of changes in energy metabolism in rat cardiomyocytes during myocardial infarction and diabetes mellitus,” Bulletin of Experimental Biology and Medicine, vol. 156, no. 4, pp. 149–152, 2012. View at Google Scholar
  5. G. D. Lopaschuk, J. R. Ussher, C. D. L. Folmes, J. S. Jaswal, and W. C. Stanley, “Myocardial fatty acid metabolism in health and disease,” Physiological Reviews, vol. 90, no. 1, pp. 207–258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. A. Afanasiev, D. S. Kondratyeva, and S. V. Popov, “Development of an experimental model of cardiac failure combined with type I diabetes mellitus,” Bulletin of Experimental Biology and Medicine, vol. 153, no. 4, pp. 530–532, 2012. View at Google Scholar
  7. S. Fukuda, S. Kaga, H. Sasaki et al., “Angiogenic signal triggered by ischemic stress induces myocardial repair in rat during chronic infarction,” Journal of Molecular and Cellular Cardiology, vol. 36, no. 4, pp. 547–559, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Pallotti and G. Lenaz, “Isolation and subfractionation of mitochondria from animal cells and tissue culture lines,” Methods in Cell Biology, vol. 80, pp. 3–44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. N. I. Fedotcheva, A. P. Sokolov, and M. N. Kondrashova, “Nonezymatic formation of succinate in mitochondria under oxidative stress,” Free Radical Biology and Medicine, vol. 41, no. 1, pp. 56–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. L. D. Lukyanova, E. L. Germanova, and I. Yu. Kirova, “The signal function of succinate and free radicals in mechanisms of preconditioning and long-term adaptation to hypoxia,” in Adaptation Biology and Medicine, P. Wang, C. H. Kuo, N. Takeda, and P. K. Singal, Eds., vol. 6 of Cell Adaptations and Challenges, chapter 19, pp. 251–277, 2011. View at Google Scholar
  11. E. I. Maevskiǐ, E. V. Grishina, A. S. Rozenfel'd, A. M. Ziakun, V. M. Vereshchagina, and M. N. Kondrashova, “Anaerobic formation of succinate and facilitation of its oxidation—possible mechanisms of cell adaptation to oxygen deficiency,” Biofizika, vol. 45, no. 3, pp. 509–513, 2000. View at Google Scholar · View at Scopus
  12. H. Taegtmeyer, “Switching metabolic genes to build a better heart,” Circulation, vol. 106, no. 16, pp. 2043–2045, 2002. View at Publisher · View at Google Scholar · View at Scopus