Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2016, Article ID 1982096, 8 pages
http://dx.doi.org/10.1155/2016/1982096
Review Article

Modulating DDAH/NOS Pathway to Discover Vasoprotective Insulin Sensitizers

1Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
2Department of Cardiothoracic Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA

Received 25 April 2015; Revised 3 July 2015; Accepted 7 July 2015

Academic Editor: Jang Hyun Choi

Copyright © 2016 Li Lai and Yohannes T. Ghebremariam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fishman, “Endothelium,” Annals of the New York Academy of Sciences, vol. 401, pp. 1–274, 1982. View at Google Scholar
  2. J. M. Cook-Mills and T. L. Deem, “Active participation of endothelial cells in inflammation,” Journal of Leukocyte Biology, vol. 77, no. 4, pp. 487–495, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. H. F. Galley and N. R. Webster, “Physiology of the endothelium,” British Journal of Anaesthesia, vol. 93, no. 1, pp. 105–113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. J. P. Cooke, “The endothelium: a new target for therapy,” Vascular Medicine, vol. 5, no. 1, pp. 49–53, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. R. G. Knowles and S. Moncada, “Nitric oxide synthases in mammals,” Biochemical Journal, vol. 298, no. 2, pp. 249–258, 1994. View at Google Scholar · View at Scopus
  6. L. Zhou and D.-Y. Zhu, “Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications,” Nitric Oxide, vol. 20, no. 4, pp. 223–230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. K.-D. Kröncke, K. Fehsel, and V. Kolb-Bachofen, “Inducible nitric oxide synthase in human diseases,” Clinical and Experimental Immunology, vol. 113, no. 2, pp. 147–156, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Palm, M. L. Onozato, Z. Luo, and C. S. Wilcox, “Dimethylarginine dimethylaminohydrolase (DDAH): expression, regulation, and function in the cardiovascular and renal systems,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 293, no. 6, pp. H3227–H3245, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Thum, D. Fraccarollo, M. Schultheiss et al., “Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes,” Diabetes, vol. 56, no. 3, pp. 666–674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Hu, D. Atzler, X. Xu et al., “Dimethylarginine dimethylaminohydrolase-1 is the critical enzyme for degrading the cardiovascular risk factor asymmetrical dimethylarginine,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 7, pp. 1540–1546, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. K. S. Altmann, A. Havemeyer, E. Beitz, and B. Clement, “Dimethylarginine-dimethylaminohydrolase-2 (DDAH-2) does not metabolize methylarginines,” ChemBioChem, vol. 13, no. 17, pp. 2599–2604, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. M. C. Stühlinger, P. S. Tsao, J.-H. Her, M. Kimoto, R. F. Balint, and J. P. Cooke, “Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine,” Circulation, vol. 104, no. 21, pp. 2569–2575, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Mittermayer, K. Krzyzanowska, M. Exner et al., “Asymmetric dimethylarginine predicts major adverse cardiovascular events in patients with advanced peripheral artery disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 11, pp. 2536–2540, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. T.-M. Lu, M.-Y. Chung, M.-W. Lin, C.-P. Hsu, and S.-J. Lin, “Plasma asymmetric dimethylarginine predicts death and major adverse cardiovascular events in individuals referred for coronary angiography,” International Journal of Cardiology, vol. 153, no. 2, pp. 135–140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. C.-P. Hsu, P. Hsu, M. Chung, S. Lin, and T. Lu, “Asymmetric dimethylarginine and long-term adverse cardiovascular events in patients with type 2 diabetes: relation with the glycemic control,” Cardiovascular Diabetology, vol. 13, article 156, 2014. View at Publisher · View at Google Scholar
  16. M. Tsutsui, S. Nakata, H. Shimokawa, Y. Otsuji, and N. Yanagihara, “Spontaneous myocardial infarction and nitric oxide synthase,” Trends in Cardiovascular Medicine, vol. 18, no. 8, pp. 275–279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Dayoub, V. Achan, S. Adimoolam et al., “Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: genetic and physiological evidence,” Circulation, vol. 108, no. 24, pp. 3042–3047, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Jacobi, R. Maas, A. J. Cardounel et al., “Dimethylarginine dimethylaminohydrolase overexpression ameliorates atherosclerosis in apolipoprotein E-deficient mice by lowering asymmetric dimethylarginine,” The American Journal of Pathology, vol. 176, no. 5, pp. 2559–2570, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. G. K. McConell, S. Rattigan, R. S. Lee-Young, G. D. Wadley, and T. L. Merry, “Skeletal muscle nitric oxide signaling and exercise: a focus on glucose metabolism,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 303, no. 3, pp. E301–E307, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. B. E. Sansbury and B. G. Hill, “Regulation of obesity and insulin resistance by nitric oxide,” Free Radical Biology and Medicine, vol. 73, pp. 383–399, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Sobrevia, A. Nadal, D. L. Yudilevich, and G. E. Mann, “Activation of L-arginine transport (system y+) and nitric oxide synthase by elevated glucose and insulin in human endothelial cells,” The Journal of Physiology, vol. 490, no. 3, pp. 775–781, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Roy, M. Perreault, and A. Marette, “Insulin stimulation of glucose uptake in skeletal muscles and adipose tissues in vivo is NO dependent,” American Journal of Physiology—Endocrinology and Metabolism, vol. 274, no. 4, part 1, pp. E692–E699, 1998. View at Google Scholar · View at Scopus
  23. H. Duplain, Ŕ. Burcelin, C. Sartori et al., “Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase,” Circulation, vol. 104, no. 3, pp. 342–345, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. R. R. Shankar, Y. Wu, H.-Q. Shen, J.-S. Zhu, and A. D. Baron, “Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance,” Diabetes, vol. 49, no. 5, pp. 684–687, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Nakagawa, W. Sato, O. Glushakova et al., “Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 18, no. 2, pp. 539–550, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Li, C.-H. Wang, J.-G. Wang et al., “Elevated tissue factor expression contributes to exacerbated diabetic nephropathy in mice lacking eNOS fed a high fat diet,” Journal of Thrombosis and Haemostasis, vol. 8, no. 10, pp. 2122–2132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Kanetsuna, K. Takahashi, M. Nagata et al., “Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice,” The American Journal of Pathology, vol. 170, no. 5, pp. 1473–1484, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Takahashi and R. C. Harris, “Role of endothelial nitric oxide synthase in diabetic nephropathy: lessons from diabetic eNOS knockout mice,” Journal of Diabetes Research, vol. 2014, Article ID 590541, 17 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Leiper and M. Nandi, “The therapeutic potential of targeting endogenous inhibitors of nitric oxide synthesis,” Nature Reviews Drug Discovery, vol. 10, no. 4, pp. 277–291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Zheng, K. Wang, P. Jin et al., “The association of adipose-derived dimethylarginine dimethylaminohydrolase-2 with insulin sensitivity in experimental type 2 diabetes mellitus,” Acta Biochimica et Biophysica Sinica, vol. 45, no. 8, pp. 641–648, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Hu, X. Xu, G. Zhu et al., “Vascular endothelial-specific dimethylarginine dimethylaminohydrolase-1-deficient mice reveal that vascular endothelium plays an important role in removing asymmetric dimethylarginine,” Circulation, vol. 120, no. 22, pp. 2222–2229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Wang, P. S. Gill, T. Chabrashvili et al., “Isoform-specific regulation by NG,NG-dimethylarginine dimethylaminohydrolase of rat serum asymmetric dimethylarginine and vascular endothelium-derived relaxing factor/NO,” Circulation Research, vol. 101, no. 6, pp. 627–635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Fang, J.-J. Mu, L.-C. He, S.-C. Wang, and Z.-Q. Liu, “Salt loading on plasma asymmetrical dimethylarginine and the protective role of potassium supplement in normotensive salt-sensitive Asians,” Hypertension, vol. 48, no. 4, pp. 724–729, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M.-S. Zhou, A. Wang, and H. Yu, “Link between insulin resistance and hypertension: what is the evidence from evolutionary biology?” Diabetology and Metabolic Syndrome, vol. 6, no. 1, article 12, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Sydow, C. E. Mondon, J. Schrader, H. Konishi, and J. P. Cooke, “Dimethylarginine dimethylaminohydrolase overexpression enhances insulin sensitivity,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 4, pp. 692–697, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Hasegawa, S. Wakino, M. Kimoto et al., “The hydrolase DDAH2 enhances pancreatic insulin secretion by transcriptional regulation of secretagogin through a Sirt1-dependent mechanism in mice,” The FASEB Journal, vol. 27, no. 6, pp. 2301–2315, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Abbasi, T. Asagmi, J. P. Cooke et al., “Plasma concentrations of asymmetric dimethylarginine are increased in patients with type 2 diabetes mellitus,” The American Journal of Cardiology, vol. 88, no. 10, pp. 1201–1203, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Yasuda, S. Miyazaki, M. Kanda et al., “Intensive treatment of risk factors in patients with type-2 diabetes mellitus is associated with improvement of endothelial function coupled with a reduction in the levels of plasma asymmetric dimethylarginine and endogenous inhibitor of nitric oxide synthase,” European Heart Journal, vol. 27, no. 10, pp. 1159–1165, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Devangelio, F. Santilli, G. Formoso et al., “Soluble RAGE in type 2 diabetes: association with oxidative stress,” Free Radical Biology and Medicine, vol. 43, no. 4, pp. 511–518, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Päivä, T. Lehtimäki, J. Laakso et al., “Plasma concentrations of asymmetric-dimethyl-arginine in type 2 diabetes associate with glycemic control and glomerular filtration rate but not with risk factors of vasculopathy,” Metabolism: Clinical and Experimental, vol. 52, no. 3, pp. 303–307, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Hanai, T. Babazono, I. Nyumura et al., “Asymmetric dimethylarginine is closely associated with the development and progression of nephropathy in patients with type 2 diabetes,” Nephrology Dialysis Transplantation, vol. 24, no. 6, pp. 1884–1888, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. M. C. Stühlinger, F. Abbasi, J. W. Chu et al., “Relationship between insulin resistance and an endogenous nitric oxide synthase inhibitor,” The Journal of the American Medical Association, vol. 287, no. 11, pp. 1420–1426, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Rask-Madsen and G. L. King, “Vascular complications of diabetes: mechanisms of injury and protective factors,” Cell Metabolism, vol. 17, no. 1, pp. 20–33, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. A. D. Mooradian, “Dyslipidemia in type 2 diabetes mellitus,” Nature Clinical Practice Endocrinology & Metabolism, vol. 5, no. 3, pp. 150–159, 2009. View at Publisher · View at Google Scholar
  45. I. P. Salt, V. A. Morrow, F. M. Brandie, J. M. C. Connell, and J. R. Petrie, “High glucose inhibits insulin-stimulated nitric oxide production without reducing endothelial nitric-oxide synthase Ser1177 phosphorylation in human aortic endothelial cells,” Journal of Biological Chemistry, vol. 278, no. 21, pp. 18791–18797, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. H. O. Steinberg, H. Chaker, R. Leaming, A. Johnson, G. Brechtel, and A. D. Baron, “Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance,” The Journal of Clinical Investigation, vol. 97, no. 11, pp. 2601–2610, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. U. Campia, G. Sullivan, M. B. Bryant, M. A. Waclawiw, M. J. Quon, and J. A. Panza, “Insulin impairs endothelium-dependent vasodilation independent of insulin sensitivity or lipid profile,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 286, no. 1, pp. H76–H82, 2004. View at Google Scholar · View at Scopus
  48. T. Kubota, N. Kubota, H. Kumagai et al., “Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle,” Cell Metabolism, vol. 13, no. 3, pp. 294–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Zhou, R. Myers, Y. Li et al., “Role of AMP-activated protein kinase in mechanism of metformin action,” The Journal of Clinical Investigation, vol. 108, no. 8, pp. 1167–1174, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Viollet, B. Guigas, N. S. Garcia, J. Leclerc, M. Foretz, and F. Andreelli, “Cellular and molecular mechanisms of metformin: an overview,” Clinical Science, vol. 122, no. 6, pp. 253–270, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Mohan, H. Patel, J. Bolinaga, and N. Soekamto, “AMP-activated protein kinase regulates L-arginine mediated cellular responses,” Nutrition and Metabolism, vol. 10, no. 1, article 40, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Rafikov, O. Rafikova, S. Aggarwal et al., “Asymmetric dimethylarginine induces endothelial nitric-oxide synthase mitochondrial redistribution through the nitration-mediated activation of Akt1,” Journal of Biological Chemistry, vol. 288, no. 9, pp. 6212–6226, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. C.-M. Tsai, H.-C. Kuo, C.-N. Hsu, L.-T. Huang, and Y.-L. Tain, “Metformin reduces asymmetric dimethylarginine and prevents hypertension in spontaneously hypertensive rats,” Translational Research, vol. 164, no. 6, pp. 452–459, 2014. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Bal, S. Bekpinar, Y. Unlucerci et al., “Antidiabetic drug metformin is effective on the metabolism of asymmetric dimethylarginine in experimental liver injury,” Diabetes Research and Clinical Practice, vol. 106, no. 2, pp. 295–302, 2014. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Mittermayer, G. Schaller, J. Pleiner et al., “Rosiglitazone prevents free fatty acid-induced vascular endothelial dysfunction,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 7, pp. 2574–2580, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. R. E. Soccio, E. R. Chen, and M. A. Lazar, “Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes,” Cell Metabolism, vol. 20, no. 4, pp. 573–591, 2014. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Wakino, K. Hayashi, S. Tatematsu et al., “Pioglitazone lowers systemic asymmetric dimethylarginine by inducing dimethylarginine dimethylaminohydrolase in rats,” Hypertension Research, vol. 28, no. 3, pp. 255–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. A. S. Kelly, A. M. Thelen, D. R. Kaiser, J. M. Gonzalez-Campoy, and A. J. Bank, “Rosiglitazone improves endothelial function and inflammation but not asymmetric dimethylarginine or oxidative stress inpatients with type 2 diabetes mellitus,” Vascular Medicine, vol. 12, no. 4, pp. 311–318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. M. C. Richir, B. Ellger, T. Teerlink et al., “The effect of rosiglitazone on asymmetric dimethylarginine (ADMA) in critically ill patients,” Pharmacological Research, vol. 60, no. 6, pp. 519–524, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. M. P. Guarino, R. A. Afonso, N. Raimundo, J. F. Raposo, and M. P. Macedo, “Hepatic glutathione and nitric oxide are critical for hepatic insulin-sensitizing substance action,” The American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 284, no. 4, pp. G588–G594, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Sadri and W. W. Lautt, “Blockade of hepatic nitric oxide synthase causes insulin resistance,” The American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 277, no. 1, part 1, pp. G101–G108, 1999. View at Google Scholar · View at Scopus
  62. M. Anderssohn, E. Schwedhelm, N. Lüneburg, R. S. Vasan, and R. H. Böger, “Asymmetric dimethylarginine as a mediator of vascular dysfunction and a marker of cardiovascular disease and mortality: an intriguing interaction with diabetes mellitus,” Diabetes and Vascular Disease Research, vol. 7, no. 2, pp. 105–118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Piatti, L. D. Monti, G. Valsecchi et al., “Long-term oral L-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients,” Diabetes Care, vol. 24, no. 5, pp. 875–880, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Abudukadier, Y. Fujita, A. Obara et al., “Tetrahydrobiopterin has a glucose-lowering effect by suppressing hepatic gluconeogenesis in an endothelial nitric oxide synthase-dependent manner in diabetic mice,” Diabetes, vol. 62, no. 9, pp. 3033–3043, 2013. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. T. Ghebremariam, K. Yamada, J. C. Lee et al., “FXR agonist INT-747 upregulates DDAH expression and enhances insulin sensitivity in high-salt fed Dahl rats,” PLoS ONE, vol. 8, no. 4, Article ID e60653, 2013. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. T. Ghebremariam, D. A. Erlanson, K. Yamada, and J. P. Cooke, “Development of a dimethylarginine dimethylaminohydrolase (DDAH) assay for high-throughput chemical screening,” Journal of Biomolecular Screening, vol. 17, no. 5, pp. 651–661, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. T. Ghebremariam, P. Lependu, J. C. Lee et al., “Unexpected effect of proton pump inhibitors: elevation of the cardiovascular risk factor asymmetric dimethylarginine,” Circulation, vol. 128, no. 8, pp. 845–853, 2013. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. T. Ghebremariam, D. A. Erlanson, and J. P. Cooke, “A novel and potent inhibitor of dimethylarginine dimethylaminohydrolase: a modulator of cardiovascular nitric oxide,” Journal of Pharmacology and Experimental Therapeutics, vol. 348, no. 1, pp. 69–76, 2014. View at Publisher · View at Google Scholar · View at Scopus
  69. J. P. Cooke and Y. T. Ghebremariam, “Dietary nitrate, nitric oxide, and restenosis,” The Journal of Clinical Investigation, vol. 121, no. 4, pp. 1258–1260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. Li, Y. Hu, S. H. Ley, S. Rajpathak, and F. B. Hu, “Sulfonylurea use and incident cardiovascular disease among patients with type 2 diabetes: prospective cohort study among women,” Diabetes Care, vol. 37, no. 11, pp. 3106–3113, 2014. View at Publisher · View at Google Scholar · View at Scopus