Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2016 (2016), Article ID 2902351, 14 pages
http://dx.doi.org/10.1155/2016/2902351
Review Article

An Overview of Murine High Fat Diet as a Model for Type 2 Diabetes Mellitus

1The University of Illinois at Chicago, Chicago, IL 60612, USA
2The Center for Cardiovascular Research, Chicago, IL 60612, USA

Received 5 May 2016; Accepted 27 June 2016

Academic Editor: Zhengyuan Xia

Copyright © 2016 Ahlke Heydemann. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. M. Reaven, “The insulin resistance syndrome: definition and dietary approaches to treatment,” Annual Review of Nutrition, vol. 25, pp. 391–406, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. L. A. Katunga, P. Gudimella, J. T. Efird et al., “Obesity in a model of gpx4 haploinsufficiency uncovers a causal role for lipid-derived aldehydes in human metabolic disease and cardiomyopathy,” Molecular Metabolism, vol. 4, no. 6, pp. 493–506, 2015. View at Publisher · View at Google Scholar
  3. I. Raz, R. Eldor, S. Cernea, and E. Shafrir, “Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage,” Diabetes/Metabolism Research and Reviews, vol. 21, no. 1, pp. 3–14, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Baribault, “Mouse models of type II diabetes mellitus in drug discovery,” Methods in Molecular Biology, vol. 602, pp. 135–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Fuentes-Antras, B. Picatoste, A. Gomez-Hernandez, J. Egido, J. Tunon, and O. Lorenzo, “Updating experimental models of diabetic cardiomyopathy,” Journal of Diabetes Research, vol. 2015, Article ID 656795, 15 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. M. S. Islam and D. T. Loots, “Experimental rodent models of type 2 diabetes: a review,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 31, no. 4, pp. 249–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Peltonen and V. A. McKusick, “Genomics and medicine: dissecting human disease in the postgenomic era,” Science, vol. 291, no. 5507, pp. 1224–1229, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Dogan, P. Lasch, C. Neuschl et al., “ATR-FTIR spectroscopy reveals genomic loci regulating the tissue response in high fat diet fed BXD recombinant inbred mouse strains,” BMC Genomics, vol. 14, no. 1, article 386, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Kahle, M. Horsch, B. Fridrich et al., “Phenotypic comparison of common mouse strains developing high-fat diet-induced hepatosteatosis,” Molecular Metabolism, vol. 2, no. 4, pp. 435–446, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. E. K. Sims, M. Hatanaka, D. L. Morris et al., “Divergent compensatory responses to high-fat diet between C57BL6/J and C57BLKS/J inbred mouse strains,” American Journal of Physiology—Endocrinology and Metabolism, vol. 305, no. 12, pp. E1495–E1511, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Kobayashi, T. Ohno, K. Ihara et al., “Searching for genomic region of high-fat diet-induced type 2 diabetes in mouse chromosome 2 by analysis of congenic strains,” PLoS ONE, vol. 9, no. 5, Article ID e96271, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. A. J. Mull, T. K. Berhanu, N. W. Roberts, and A. Heydemann, “The Murphy Roths Large (MRL) mouse strain is naturally resistant to high fat diet-induced hyperglycemia,” Metabolism: Clinical and Experimental, vol. 63, no. 12, pp. 1577–1586, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. D. A. Fontaine and D. B. Davis, “Attention to background strain is essential for metabolic research: c57bl/6 and the international knockout mouse consortium,” Diabetes, vol. 65, no. 1, pp. 25–33, 2015. View at Publisher · View at Google Scholar
  14. I. Abdesselam, P. Pepino, T. Troalen et al., “Time course of cardiometabolic alterations in a high fat high sucrose diet mice model and improvement after GLP-1 analog treatment using multimodal cardiovascular magnetic resonance,” Journal of Cardiovascular Magnetic Resonance, vol. 17, article 95, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Carbone, A. G. Mauro, E. Mezzaroma et al., “A high-sugar and high-fat diet impairs cardiac systolic and diastolic function in mice,” International Journal of Cardiology, vol. 198, pp. 66–69, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. N. W. Roberts, M. González-Vega, T. K. Berhanu, A. Mull, J. García, and A. Heydemann, “Successful metabolic adaptations leading to the prevention of high fat diet-induced murine cardiac remodeling,” Cardiovascular Diabetology, vol. 14, no. 1, article 127, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Villarroya, I. Redondo-Angulo, R. Iglesias, M. Giralt, F. Villarroya, and A. Planavila, “Sirt1 mediates the effects of a short-term high-fat diet on the heart,” Journal of Nutritional Biochemistry, vol. 26, no. 11, pp. 1328–1337, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. S. D. Calligaris, M. Lecanda, F. Solis et al., “Mice long-term high-fat diet feeding recapitulates human cardiovascular alterations: an animal model to study the early phases of diabetic cardiomyopathy,” PLoS ONE, vol. 8, no. 4, Article ID e60931, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. R. E. Brainard, L. J. Watson, A. M. DeMartino et al., “High fat feeding in mice is insufficient to induce cardiac dysfunction and does not exacerbate heart failure,” PLoS ONE, vol. 8, no. 12, Article ID e83174, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Lazo and J. M. Clark, “The epidemiology of nonalcoholic fatty liver disease: a global perspective,” Seminars in Liver Disease, vol. 28, no. 4, pp. 339–350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Nakamura and Y. Terauchi, “Lessons from mouse models of high-fat diet-induced NAFLD,” International Journal of Molecular Sciences, vol. 14, no. 11, pp. 21240–21257, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Cancello and K. Clément, “Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue,” BJOG: An International Journal of Obstetrics and Gynaecology, vol. 113, no. 10, pp. 1141–1147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. F. Gregor and G. S. Hotamisligil, “Inflammatory mechanisms in obesity,” Annual Review of Immunology, vol. 29, pp. 415–445, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Hu, H. Wang, I. H. Lee et al., “PTEN inhibition improves muscle regeneration in mice fed a high-fat diet,” Diabetes, vol. 59, no. 6, pp. 1312–1320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. O. Seitz, C. Schürmann, N. Hermes et al., “Wound healing in mice with high-fat diet- or ob gene-induced diabetes-obesity syndromes: a comparative study,” Experimental Diabetes Research, vol. 2010, Article ID 476969, 15 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Shankar, N. Bhaskaran, G. T. MacLennan, G. Liu, F. Daneshgari, and S. Gupta, “Inflammatory signaling involved in high-fat diet induced prostate diseases,” Journal of Urology and Research, vol. 2, no. 1, Article ID 1018, 2015. View at Google Scholar
  27. N. M. Delzenne, P. D. Cani, A. Everard, A. M. Neyrinck, and L. B. Bindels, “Gut microorganisms as promising targets for the management of type 2 diabetes,” Diabetologia, vol. 58, no. 10, pp. 2206–2217, 2015. View at Publisher · View at Google Scholar · View at Scopus
  28. E. A. Murphy, K. T. Velazquez, and K. M. Herbert, “Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 18, no. 5, pp. 515–520, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. D. P. Singh, P. Khare, J. Zhu et al., “A novel cobiotic-based preventive approach against high-fat diet-induced adiposity, nonalcoholic fatty liver and gut derangement in mice,” International Journal of Obesity, vol. 40, pp. 487–496, 2016. View at Publisher · View at Google Scholar · View at Scopus
  30. J. P. Kesby, J. J. Kim, M. Scadeng et al., “Spatial cognition in adult and aged mice exposed to high-fat diet,” PLoS ONE, vol. 10, no. 10, Article ID e0140034, 2015. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Nuzzo, P. Picone, S. Baldassano et al., “Insulin resistance as common molecular denominator linking obesity to Alzheimer’s disease,” Current Alzheimer Research, vol. 12, no. 8, pp. 723–735, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Kesherwani, V. Chavali, B. T. Hackfort, S. C. Tyagi, and P. K. Mishra, “Exercise ameliorates high fat diet induced cardiac dysfunction by increasing interleukin 10,” Frontiers in Physiology, vol. 6, article 124, 2015. View at Publisher · View at Google Scholar · View at Scopus
  33. L. A. Brown, D. E. Lee, J. F. Patton et al., “Diet-induced obesity alters anabolic signalling in mice at the onset of skeletal muscle regeneration,” Acta Physiologica, vol. 215, no. 1, pp. 46–57, 2015. View at Publisher · View at Google Scholar · View at Scopus
  34. K. A. Baltgalvis, K. White, W. Li et al., “Exercise performance and peripheral vascular insufficiency improve with AMPK activation in high-fat diet-fed mice,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 306, no. 8, pp. H1128–H1145, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Akhmedov and R. Berdeaux, “The effects of obesity on skeletal muscle regeneration,” Frontiers in Physiology, vol. 4, article 371, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. M.-H. Nguyen, M. Cheng, and T. J. Koh, “Impaired muscle regeneration in Ob/ob and Db/db mice,” TheScientificWorldJournal, vol. 11, pp. 1525–1535, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. J. V. Neel, “Diabetes mellitus: a ‘thrifty’ genotype rendered detrimental by ‘progress’?” The American Journal of Human Genetics, vol. 14, pp. 353–362, 1962. View at Google Scholar · View at Scopus
  38. J. R. Speakman and K. R. Westerterp, “A mathematical model of weight loss under total starvation: evidence against the thrifty-gene hypothesis,” Disease Models and Mechanisms, vol. 6, no. 1, pp. 236–251, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. Q. Ayub, L. Moutsianas, Y. Chen et al., “Revisiting the thrifty gene hypothesis via 65 loci associated with susceptibility to type 2 diabetes,” The American Journal of Human Genetics, vol. 94, no. 2, pp. 176–185, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. X.-H. Koh, X. Liu, and Y.-Y. Teo, “Can evidence from genome-wide association studies and positive natural selection surveys be used to evaluate the thrifty gene hypothesis in East Asians?” PLoS ONE, vol. 9, no. 10, Article ID A1833, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Taegtmeyer, C. Beauloye, R. Harmancey, and L. Hue, “Insulin resistance protects the heart from fuel overload in dysregulated metabolic states,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 305, no. 12, pp. H1693–H1697, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. S. E. Nissen and K. Wolski, “Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes,” The New England Journal of Medicine, vol. 356, no. 24, pp. 2457–2471, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Ding, J. Guo, and Z. Su, “The status of research into resistance to diet-induced obesity,” Hormone and Metabolic Research, vol. 47, no. 6, pp. 404–410, 2015. View at Publisher · View at Google Scholar · View at Scopus
  44. H.-Y. Lee, K.-H. Jeong, and C. S. Choi, “In-depth metabolic phenotyping of genetically engineered mouse models in obesity and diabetes,” Mammalian Genome, vol. 25, no. 9-10, pp. 508–521, 2014. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Guo, “Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms,” Journal of Endocrinology, vol. 220, no. 2, pp. T1–T23, 2014. View at Publisher · View at Google Scholar · View at Scopus
  46. A. E. Bunner, P. C. Chandrasekera, and N. D. Barnard, “Knockout mouse models of insulin signaling: relevance past and future,” World Journal of Diabetes, vol. 5, no. 2, pp. 146–159, 2014. View at Publisher · View at Google Scholar
  47. M. I. McCarthy, “Genomics, type 2 diabetes, and obesity,” The New England Journal of Medicine, vol. 363, no. 24, pp. 2339–2350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Jovicic, I. Jeftic, I. Jovanovic et al., “Differential immunometabolic phenotype in Th1 and Th2 dominant mouse strains in response to high-fat feeding,” PLoS ONE, vol. 10, no. 7, Article ID e0134089, 2015. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Xue, J. Li, L. Yan, L. Lu, and F.-F. Liao, “Genetic variability to diet-induced hippocampal dysfunction in BXD recombinant inbred (RI) mouse strains,” Behavioural Brain Research, vol. 292, pp. 83–94, 2015. View at Publisher · View at Google Scholar · View at Scopus
  50. R. S. Surwit, M. N. Feinglos, J. Rodin et al., “Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A J mice,” Metabolism, vol. 44, no. 5, pp. 645–651, 1995. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Andrikopoulos, A. R. Blair, N. Deluca, B. C. Fam, and J. Proietto, “Evaluating the glucose tolerance test in mice,” American Journal of Physiology—Endocrinology and Metabolism, vol. 295, no. 6, pp. E1323–E1332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Ikeda, T. Suehiro, T. Nakamura, Y. Kumon, and K. Hashimoto, “Clinical significance of the insulin resistance index as assessed by homeostasis model assessment,” Endocrine Journal, vol. 48, no. 1, pp. 81–86, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. C. S. Choi, D. B. Savage, L. Abu-Elheiga et al., “Continuous fat oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 42, pp. 16480–16485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. Z. Zhang, S. Wang, S. Zhou et al., “Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway,” Journal of Molecular and Cellular Cardiology, vol. 77, pp. 42–52, 2014. View at Publisher · View at Google Scholar · View at Scopus
  55. M. V. Cannon, H. H. W. Silljé, J. W. A. Sijbesma et al., “LXRα improves myocardial glucose tolerance and reduces cardiac hypertrophy in a mouse model of obesity-induced type 2 diabetes,” Diabetologia, vol. 59, no. 3, pp. 634–643, 2016. View at Publisher · View at Google Scholar · View at Scopus
  56. K. J. Strissel, Z. Stancheva, H. Miyoshi et al., “Adipocyte death, adipose tissue remodeling, and obesity complications,” Diabetes, vol. 56, no. 12, pp. 2910–2918, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Tajima, A. Nakamura, J. Shirakawa et al., “Metformin prevents liver tumorigenesis induced by high-fat diet in C57Bl/6 mice,” American Journal of Physiology—Endocrinology and Metabolism, vol. 305, no. 8, pp. E987–E998, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Ganz, T. N. Bukong, T. Csak et al., “Progression of non-alcoholic steatosis to steatohepatitis and fibrosis parallels cumulative accumulation of danger signals that promote inflammation and liver tumors in a high fat-cholesterol-sugar diet model in mice,” Journal of Translational Medicine, vol. 13, no. 1, article 193, 2015. View at Publisher · View at Google Scholar · View at Scopus
  59. C. X. Fang, F. Dong, D. P. Thomas, H. Ma, L. He, and J. Ren, “Hypertrophic cardiomyopathy in high-fat diet-induced obesity: role of suppression of forkhead transcription factor and atrophy gene transcription,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 295, no. 3, pp. H1206–H1215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. R. E. Mosser, M. F. Maulis, V. S. Moullé et al., “High-fat diet-induced β-cell proliferation occurs prior to insulin resistance in C57Bl/6J male mice,” American Journal of Physiology—Endocrinology and Metabolism, vol. 308, no. 7, pp. E573–E582, 2015. View at Publisher · View at Google Scholar · View at Scopus
  61. G. V. Asha, R. G. Reddy, M. Mahesh, A. Vajreswari, and S. M. Jeyakumar, “Male mice are susceptible to high fat diet-induced hyperglycaemia and display increased circulatory retinol binding protein 4 (RBP4) levels and its expression in visceral adipose depots,” Archives of Physiology and Biochemistry, vol. 122, no. 1, pp. 19–26, 2016. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Macotela, J. Boucher, T. T. Tran, and C. R. Kahn, “Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism,” Diabetes, vol. 58, no. 4, pp. 803–812, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. E. Morselli, A. Criollo, C. Rodriguez-Navas, and D. J. Clegg, “Chronic high fat diet consumption impairs metabolic health of male mice,” Inflammation and Cell Signaling, vol. 1, no. 6, p. e561, 2014. View at Google Scholar
  64. M. L. Grundleger, V. Y. Godbole, and S. W. Thenen, “Age-dependent development of insulin resistance of soleus muscle in genetically obese (ob/ob) mice,” The American Journal of Physiology, vol. 239, no. 5, pp. E363–371, 1980. View at Google Scholar · View at Scopus
  65. M. Rossmeisl, J. S. Rim, R. A. Koza, and L. P. Kozak, “Variation in type 2 diabetes—related traits in mouse strains susceptible to diet-induced obesity,” Diabetes, vol. 52, no. 8, pp. 1958–1966, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. E. D. Berglund, C. Y. Li, G. Poffenberger et al., “Glucose metabolism in vivo in four commonly used inbred mouse strains,” Diabetes, vol. 57, no. 7, pp. 1790–1799, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. H. C. Freeman, A. Hugill, N. T. Dear, F. M. Ashcroft, and R. D. Cox, “Deletion of nicotinamide nucleotide transhydrogenase: a new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice,” Diabetes, vol. 55, no. 7, pp. 2153–2156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. J. L. Peirce, L. Lu, J. Gu, L. M. Silver, and R. W. Williams, “A new set of BXD recombinant inbred lines from advanced intercross populations in mice,” BMC Genetics, vol. 5, article 7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. W. C. Stanley, E. R. Dabkowski, R. F. Ribeiro, and K. A. O'Connell, “Dietary fat and heart failure: moving from lipotoxicity to lipoprotection,” Circulation Research, vol. 110, no. 5, pp. 764–776, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. N. Hariri, R. Gougeon, and L. Thibault, “A highly saturated fat-rich diet is more obesogenic than diets with lower saturated fat content,” Nutrition Research, vol. 30, no. 9, pp. 632–643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Takahashi, S. Ikemoto, and O. Ezaki, “Effect of the fat/carbohydrate ratio in the diet on obesity and oral glucose tolerance in C57BL/6J mice,” Journal of Nutritional Science and Vitaminology, vol. 45, no. 5, pp. 583–593, 1999. View at Publisher · View at Google Scholar · View at Scopus
  72. T. U. Maioli, J. L. Gonçalves, M. C. G. Miranda et al., “High sugar and butter (HSB) diet induces obesity and metabolic syndrome with decrease in regulatory T cells in adipose tissue of mice,” Inflammation Research, vol. 65, no. 2, pp. 169–178, 2016. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Luo, J. Quan, J. Tsai et al., “Nongenetic mouse models of non-insulin-dependent diabetes mellitus,” Metabolism: Clinical and Experimental, vol. 47, no. 6, pp. 663–668, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Cai, S. Lu, Z. Yao et al., “Glibenclamide attenuates myocardial injury by lipopolysaccharides in streptozotocin-induced diabetic mice,” Cardiovascular Diabetology, vol. 13, no. 1, article 106, 2014. View at Publisher · View at Google Scholar
  75. K. A. Krawczewski Carhuatanta, G. Demuro, M. H. Tschöp, P. T. Pfluger, S. C. Benoit, and S. Obici, “Voluntary exercise improves high-fat diet-induced leptin resistance independent of adiposity,” Endocrinology, vol. 152, no. 7, pp. 2655–2664, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. Q. Wang, X. D. Perrard, J. L. Perrard et al., “Differential effect of weight loss with low-fat diet or high-fat diet restriction on inflammation in the liver and adipose tissue of mice with diet-induced obesity,” Atherosclerosis, vol. 219, no. 1, pp. 100–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. F. Q. Nuttall and M. C. Gannon, “Sucrose and disease,” Diabetes Care, vol. 4, no. 2, pp. 305–310, 1981. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Mishmar, E. Ruiz-Pesini, P. Golik et al., “Natural selection shaped regional mtDNA variation in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 171–176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. N. Apaijai, H. Pintana, S. C. Chattipakorn, and N. Chattipakorn, “Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats,” British Journal of Pharmacology, vol. 169, no. 5, pp. 1048–1057, 2013. View at Publisher · View at Google Scholar · View at Scopus
  80. N. S. Kalupahana, N. Moustaid-Moussa, and K. J. Claycombe, “Immunity as a link between obesity and insulin resistance,” Molecular Aspects of Medicine, vol. 33, no. 1, pp. 26–34, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. G. R. Romeo, J. Lee, and S. E. Shoelson, “Metabolic syndrome, insulin resistance, and roles of inflammation—mechanisms and therapeutic targets,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 8, pp. 1771–1776, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. B. D. Henriksbo, T. C. Lau, J. F. Cavallari et al., “Fluvastatin causes NLRP3 inflammasome-mediated adipose insulin resistance,” Diabetes, vol. 63, no. 11, pp. 3742–3747, 2014. View at Publisher · View at Google Scholar · View at Scopus
  83. J. D. Schilling and D. L. Mann, “Diabetic cardiomyopathy: bench to bedside,” Heart Failure Clinics, vol. 8, no. 4, pp. 619–631, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Stienstra, S. Mandard, D. Patsouris, C. Maass, S. Kersten, and M. Müller, “Peroxisome proliferator-activated receptor α protects against obesity-induced hepatic inflammation,” Endocrinology, vol. 148, no. 6, pp. 2753–2763, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. R. H. Ritchie and L. M. D. Delbridge, “Cardiac hypertrophy, substrate utilization and metabolic remodelling: cause or effect?” Clinical and Experimental Pharmacology and Physiology, vol. 33, no. 1-2, pp. 159–166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. E. Di Marco, J. C. Jha, A. Sharma, J. L. Wilkinson-Berka, K. A. Jandeleit-Dahm, and J. B. De Haan, “Are reactive oxygen species still the basis for diabetic complications?” Clinical Science, vol. 129, no. 2, pp. 199–216, 2016. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Yu, S.-S. Sheu, J. L. Robotham, and Y. Yoon, “Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species,” Cardiovascular Research, vol. 79, no. 2, pp. 341–351, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. T. Watanabe, M. Saotome, M. Nobuhara et al., “Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance,” Experimental Cell Research, vol. 323, no. 2, pp. 314–325, 2014. View at Publisher · View at Google Scholar · View at Scopus
  89. H.-C. Hsu, C.-Y. Chen, B.-C. Lee, and M.-F. Chen, “High-fat diet induces cardiomyocyte apoptosis via the inhibition of autophagy,” European Journal of Nutrition, 2015. View at Publisher · View at Google Scholar · View at Scopus
  90. K. Liu, E. Zhao, G. Ilyas et al., “Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization,” Autophagy, vol. 11, no. 2, pp. 271–284, 2015. View at Publisher · View at Google Scholar · View at Scopus
  91. L. V. Yuzefovych, S. I. Musiyenko, G. L. Wilson, and L. I. Rachek, “Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice,” PLoS ONE, vol. 8, no. 1, Article ID e54059, 2013. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Sciarretta, M. Volpe, and J. Sadoshima, “Is reactivation of autophagy a possible therapeutic solution for obesity and metabolic syndrome?” Autophagy, vol. 8, no. 8, pp. 1252–1254, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. Y. Liu, R. Palanivel, E. Rai et al., “Adiponectin stimulates autophagy and reduces oxidative stress to enhance insulin sensitivity during high-fat diet feeding in mice,” Diabetes, vol. 64, no. 1, pp. 36–48, 2015. View at Publisher · View at Google Scholar · View at Scopus
  94. D. Montaigne, X. Marechal, A. Coisne et al., “Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients,” Circulation, vol. 130, no. 7, pp. 554–564, 2014. View at Publisher · View at Google Scholar · View at Scopus
  95. F. Westermeier, M. Navarro-Marquez, C. López-Crisosto et al., “Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy,” Biochimica et Biophysica Acta—Molecular Cell Research, vol. 1853, no. 5, pp. 1113–1118, 2015. View at Publisher · View at Google Scholar · View at Scopus
  96. V. Parra, H. E. Verdejo, M. Iglewski et al., “Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFκB-Opa-1 signaling pathway,” Diabetes, vol. 63, no. 1, pp. 75–88, 2014. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Gundewar, J. W. Calvert, S. Jha et al., “Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure,” Circulation Research, vol. 104, no. 3, pp. 403–411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. E. A. Bradley, L. Zhang, A. J. Genders, S. M. Richards, S. Rattigan, and M. A. Keske, “Enhancement of insulin-mediated rat muscle glucose uptake and microvascular perfusion by 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside,” Cardiovascular Diabetology, vol. 14, no. 1, article 91, 2015. View at Publisher · View at Google Scholar · View at Scopus
  99. B.-C. Lee and J. Lee, “Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1842, no. 3, pp. 446–462, 2014. View at Publisher · View at Google Scholar · View at Scopus
  100. K. I. Stanford, R. J. W. Middelbeek, K. L. Townsend et al., “Brown adipose tissue regulates glucose homeostasis and insulin sensitivity,” The Journal of Clinical Investigation, vol. 123, no. 1, pp. 215–223, 2013. View at Publisher · View at Google Scholar · View at Scopus
  101. S. Virtue and A. Vidal-Puig, “Assessment of brown adipose tissue function,” Frontiers in Physiology, vol. 4, article 128, 2013. View at Publisher · View at Google Scholar
  102. K. Majzner, K. Kochan, N. Kachamakova-Trojanowska, E. Maslak, S. Chlopicki, and M. Baranska, “Raman imaging providing insights into chemical composition of lipid droplets of different size and origin: in hepatocytes and endothelium,” Analytical Chemistry, vol. 86, no. 13, pp. 6666–6674, 2014. View at Publisher · View at Google Scholar · View at Scopus
  103. G. Kanuri and I. Bergheim, “In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD),” International Journal of Molecular Sciences, vol. 14, no. 6, pp. 11963–11980, 2013. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Consoli, N. Nurjhan, F. Capani, and J. Gerich, “Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM,” Diabetes, vol. 38, no. 5, pp. 550–557, 1989. View at Publisher · View at Google Scholar · View at Scopus
  105. M. S. Brown and J. L. Goldstein, “Selective versus total insulin resistance: a pathogenic paradox,” Cell Metabolism, vol. 7, no. 2, pp. 95–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. P. K. Battiprolu, T. G. Gillette, Z. V. Wang, S. Lavandero, and J. A. Hill, “Diabetic cardiomyopathy: mechanisms and therapeutic targets,” Drug Discovery Today: Disease Mechanisms, vol. 7, no. 2, pp. e135–e143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. P. K. Battiprolu, B. Hojayev, N. Jiang et al., “Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice,” Journal of Clinical Investigation, vol. 122, no. 3, pp. 1109–1118, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. R. H. Unger, “Lipotoxic diseases,” Annual Review of Medicine, vol. 53, pp. 319–336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. T. F. Galvao, B. H. Brown, P. A. Hecker et al., “High intake of saturated fat, but not polyunsaturated fat, improves survival in heart failure despite persistent mitochondrial defects,” Cardiovascular Research, vol. 93, no. 1, pp. 24–32, 2012. View at Publisher · View at Google Scholar · View at Scopus
  110. G. C. Fonarow, P. Srikanthan, M. R. Costanzo, G. B. Cintron, and M. Lopatin, “An obesity paradox in acute heart failure: analysis of body mass index and inhospital mortality for 108 927 patients in the Acute Decompensated Heart Failure National Registry,” American Heart Journal, vol. 153, no. 1, pp. 74–81, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Poncelas, J. Inserte, Ú. Vilardosa et al., “Obesity induced by high fat diet attenuates postinfarct myocardial remodeling and dysfunction in adult B6D2F1 mice,” Journal of Molecular and Cellular Cardiology, vol. 84, pp. 154–161, 2015. View at Publisher · View at Google Scholar · View at Scopus
  112. Y. Zhou, S. Lin, L. Zhang, and Y. Li, “Resveratrol prevents renal lipotoxicity in high-fat diet-treated mouse model through regulating PPAR-α pathway,” Molecular and Cellular Biochemistry, vol. 411, no. 1-2, pp. 143–150, 2016. View at Publisher · View at Google Scholar · View at Scopus