Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2016, Article ID 5741518, 12 pages
http://dx.doi.org/10.1155/2016/5741518
Research Article

Urinary Extracellular Vesicles: Potential Biomarkers of Renal Function in Diabetic Patients

1Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland
2Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK
3Laboratory of High Resolution Mass Spectrometry, Regional Laboratory of Physicochemical Analysis and Structural Research, Faculty of Chemistry, Jagiellonian University, 30-060 Kraków, Poland
4Department of Diagnostics, Chair of Clinical Biochemistry, Jagiellonian University Medical College, 31-501 Kraków, Poland
5St’ Queen Jadwiga Clinical District Hospital No. 2, 35-301 Rzeszów, Poland
6Department of Cell Biology and Imaging, Institute of Zoology, Faculty of Biology and Earth Sciences, Jagiellonian University, 30-387 Kraków, Poland
7Department of Solid State Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland
8Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-060 Kraków, Poland
9Department of Nephrology, Jagiellonian University Medical College, 31-501 Kraków, Poland

Received 28 September 2016; Revised 8 November 2016; Accepted 13 November 2016

Academic Editor: Feng Wang

Copyright © 2016 Agnieszka Kamińska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. R. Tuttle, G. L. Bakris, R. W. Bilous et al., “Diabetic kidney disease: a report from an ADA consensus conference,” Diabetes Care, vol. 37, no. 10, pp. 2864–2883, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. D. J. Leehey, H. J. Kramer, T. M. Daoud, M. P. Chatha, and M. A. Isreb, “Progression of kidney disease in type 2 diabetes—beyond blood pressure control: an observational study,” BMC Nephrology, vol. 6, pp. 1471–2369, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. National Kidney Foundation, Diabetes—a major risk factor for kidney disease, https://www.kidney.org/news/newsroom/factsheets/FastFacts/.
  4. Y. Yuana, A. Sturk, and R. Nieuwland, “Extracellular vesicles in physiological and pathological conditions,” Blood Reviews, vol. 27, no. 1, pp. 31–39, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Ranghino, V. Dimuccio, E. Papadimitriou, and B. Bussolati, “Extracellular vesicles in the urine: markers and mediators of tissue damage and regeneration,” Clinical Kidney Journal, vol. 8, no. 1, pp. 23–30, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Gámez-Valero, S. I. Lozano-Ramos, I. Bancu, R. Lauzurica-Valdemoros, and F. E. Borràs, “Urinary extracellular vesicles as source of biomarkers in kidney diseases,” Frontiers in Immunology, vol. 6, no. 6, Article ID 00006, 2015. View at Publisher · View at Google Scholar · View at Scopus
  7. D. A. Shifrin Jr., M. D. Beckler, R. J. Coffey, and M. J. Tyska, “Extracellular vesicles: communication, coercion, and conditioning,” Molecular Biology of the Cell, vol. 24, no. 9, pp. 1253–1259, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. M. P. Zaborowski, L. Balaj, X. O. Breakefield, and C. P. Lai, “Extracellular vesicles: composition, biological relevance, and methods of study,” BioScience, vol. 65, no. 8, pp. 783–797, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Musante, D. E. Tataruch, and H. Holthofer, “Use and isolation of urinary exosomes as biomarkers for diabetic nephropathy,” Frontiers in Endocrinology, vol. 5, article 149, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Pisitkun, R. Johnstone, and M. A. Knepper, “Discovery of urinary biomarkers,” Molecular and Cellular Proteomics, vol. 5, no. 10, pp. 1760–1771, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. E. A. Lock, “Sensitive and early markers of renal injury: where are we and what is the way forward?” Toxicological Sciences, vol. 116, no. 1, pp. 1–4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Levenson, “The search for improved markers of acute kidney injury,” https://www.aacc.org/publications/cln/articles/2014/january/kidney-injury/.
  13. A. Żyłka, A. Gala-Błądzińska, K. Rybak, P. Dumnicka, R. Drożdż, and B. Kuśnierz-Cabala, “Role of new biomarkers for the diagnosis of nephropathy associated with diabetes type 2,” Folia Medica Cracoviensia, vol. 55, no. 4, pp. 21–33, 2015. View at Google Scholar
  14. L. Musante, D. Tataruch, D. Gu et al., “Proteases and protease inhibitors of urinary extracellular vesicles in diabetic nephropathy,” Journal of Diabetes Research, vol. 2015, Article ID 289734, 14 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. F. A. Coumans, E. van der Pol, A. N. Böing et al., “Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing,” Journal of Extracellular Vesicles, vol. 3, Article ID 25922, 2014. View at Publisher · View at Google Scholar
  16. E. L. C. J. Blundell, L. J. Mayne, E. R. Billinge, and M. Platt, “Emergence of tunable resistive pulse sensing as a biosensor,” Analytical Methods, vol. 7, no. 17, pp. 7055–7066, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. E. L. C. J. Blundell, R. Vogel, and M. Platt, “Particle-by-particle charge analysis of dna-modified nanoparticles using tunable resistive pulse sensing,” Langmuir, vol. 32, no. 4, pp. 1082–1090, 2016. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Anderson, R. Lane, D. Korbie, and M. Trau, “Observations of tunable resistive pulse sensing for exosome analysis: improving system sensitivity and stability,” Langmuir, vol. 31, no. 23, pp. 6577–6587, 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. J. R. Wiśniewski and M. Mann, “Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis,” Analytical Chemistry, vol. 84, no. 6, pp. 2631–2637, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Kasprzyk, E. Stępień, and W. Piekoszewski, “Application of nano-LC-MALDI-TOF/TOF-MS for proteomic analysis of microvesicles,” Clinical Biochemistry, 2016. View at Publisher · View at Google Scholar
  21. P. D. Thomas, M. J. Campbell, A. Kejariwal et al., “PANTHER: a library of protein families and subfamilies indexed by function,” Genome Research, vol. 13, no. 9, pp. 2129–2141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. Venny 2.1 by Juan Carlos Oliveros, BioinfoGP, CNB-CSIC, http://bioinfogp.cnb.csic.es/tools/venny/.
  23. J. Bobrowska, J. Pabijan, J. Wiltowska-Zuber et al., “Protocol of single cells preparation for time of flight secondary ion mass spectrometry,” Analytical Biochemistry, vol. 511, pp. 52–60, 2016. View at Publisher · View at Google Scholar
  24. D. Szklarczyk, A. Franceschini, S. Wyder et al., “STRING v10: protein-protein interaction networks, integrated over the tree of life,” Nucleic Acids Research, vol. 43, no. 1, pp. D447–D452, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. C. A. Rabito, F. Panico, R. Rubin, N. Tolkoff-Rubin, and R. Teplick, “Noninvasive, real-time monitoring of renal function during critical care,” Journal of the American Society of Nephrology, vol. 4, no. 7, pp. 1421–1428, 1994. View at Google Scholar · View at Scopus
  26. A. E. Turco, W. Lam, A. D. Rule et al., “Specific renal parenchymal-derived urinary extracellular vesicles identify age-associated structural changes in living donor kidneys,” Journal of Extracellular Vesicles, vol. 5, 2016. View at Publisher · View at Google Scholar
  27. P. McFarlane, R. E. Gilbert, L. MacCallum, and P. Senior, “Chronic kidney disease in diabetes,” Canadian Journal of Diabetes, vol. 37, no. 1, pp. S129–S136, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Thomas and L. Thomas, “Renal failure-measuring the glomerular filtration rate,” Deutsches Ärzteblatt International, vol. 106, no. 51-52, pp. 849–854, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Metcalfe, “How does early chronic kidney disease progress? A background paper prepared for the UK consensus conference on early chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 22, no. 9, pp. 26–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Palatini, “Glomerular hyperfiltration: a marker of early renal damage in pre-diabetes and pre-hypertension,” Nephrology Dialysis Transplantation, vol. 27, no. 5, pp. 1708–1714, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. B. M. Brenner, E. V. Lawler, and H. S. Mackenzie, “The hyperfiltration theory: a paradigm shift in nephrology,” Kidney International, vol. 49, no. 6, pp. 1774–1777, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Rigalleau, C. Lasseur, C. Perlemoine et al., “Estimation of glomerular filtration rate in diabetic subjects: cockcroft formula or modification of diet in renal disease equation?” Diabetes Care, vol. 28, no. 4, pp. 838–843, 2005. View at Publisher · View at Google Scholar
  33. C. Thornley, A. Dawnay, and W. R. Cattell, “Human Tamm-Horsfall glycoprotein: urinary and plasma levels in normal subjects and patients with renal disease determined by a fully validated radioimmunoassay,” Clinical Science, vol. 68, no. 5, pp. 529–535, 1985. View at Publisher · View at Google Scholar · View at Scopus
  34. A. M. Bernard, A. A. Ouled, R. R. Lauwerys, A. Lambert, and B. Vandeleene, “Pronounced decrease of Tamm-Horsfall proteinuria in diabetics,” Clinical Chemistry, vol. 33, no. 7, article 1264, 1987. View at Google Scholar · View at Scopus
  35. T. F. Hiemstra, P. D. Charles, T. Gracia et al., “Human urinary exosomes as innate immune effectors,” Journal of the American Society of Nephrology : JASN, vol. 25, no. 9, pp. 2017–2027, 2014. View at Publisher · View at Google Scholar · View at Scopus
  36. R. L. Mehta, “Glycemic control and critical illness: is the kidney involved?” Journal of the American Society of Nephrology, vol. 18, no. 10, pp. 2623–2627, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. L. A. Sechi, C. Catena, L. Zingaro, A. Melis, and S. De Marchi, “Abnormalities of glucose metabolism in patients with early renal failure,” Diabetes, vol. 51, no. 4, pp. 1226–1232, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Sporek, P. Dumnicka, A. Gala-Błądzińska et al., “Angiopoietin-2 is an early indicator of acute pancreatic-renal syndrome in patients with acute pancreatitis,” Mediators of Inflammation, vol. 2016, Article ID 5780903, 7 pages, 2016. View at Publisher · View at Google Scholar
  39. S. Levy, S. C. Todd, and H. T. Maecker, “CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system,” Annual Review of Immunology, vol. 16, pp. 89–109, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Perez-Hernandez, C. Gutiérrez-Vázquez, I. Jorge et al., “The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes,” Journal of Biological Chemistry, vol. 288, no. 17, pp. 11649–11661, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Pocsfalvi, D. A. A. Raj, I. Fiume, A. Vilasi, F. Trepiccione, and G. Capasso, “Urinary extracellular vesicles as reservoirs of altered proteins during the pathogenesis of polycystic kidney disease,” Proteomics—Clinical Applications, vol. 9, no. 5-6, pp. 552–567, 2015. View at Publisher · View at Google Scholar · View at Scopus
  42. I. Zubiri, M. Posada-Ayala, A. Benito-Martin et al., “Kidney tissue proteomics reveals regucalcin downregulation in response to diabetic nephropathy with reflection in urinary exosomes,” Translational Research, vol. 166, no. 5, pp. 474–484.e4, 2015. View at Publisher · View at Google Scholar · View at Scopus