Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2016, Article ID 6463214, 9 pages
http://dx.doi.org/10.1155/2016/6463214
Research Article

Lack of Association between SLC30A8 Variants and Type 2 Diabetes in Mexican American Families

South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA

Received 4 August 2016; Accepted 11 October 2016

Academic Editor: Liping Yu

Copyright © 2016 Hemant Kulkarni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Zeggini, M. N. Weedon, C. M. Lindgren et al., “Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes,” Science, vol. 316, pp. 1336–1341, 2007. View at Google Scholar
  2. R. Sladek, G. Rocheleau, J. Rung et al., “A genome-wide association study identifies novel risk loci for type 2 diabetes,” Nature, vol. 445, no. 7130, pp. 881–885, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. L. J. Scott, K. L. Mohlke, L. L. Bonnycastle et al., “A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants,” Science, vol. 316, no. 5829, pp. 1341–1345, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Saxena, B. F. Voight, V. Lyssenko et al., “Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels,” Science, vol. 316, no. 5829, pp. 1331–1336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Tamaki, Y. Fujitani, A. Hara et al., “The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance,” The Journal of Clinical Investigation, vol. 123, no. 10, pp. 4513–4524, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Wijesekara, F. F. Dai, A. B. Hardy et al., “Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion,” Diabetologia, vol. 53, no. 8, pp. 1656–1668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Cheng, D. Zhang, L. Zhou, J. Zhao, and B. Chen, “Association between SLC30A8 rs13266634 polymorphism and type 2 diabetes risk: a meta-analysis,” Medical Science Monitor, vol. 21, pp. 2178–2189, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Rorsman and E. Renström, “Insulin granule dynamics in pancreatic beta cells,” Diabetologia, vol. 46, no. 8, pp. 1029–1045, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. K. G. Slepchenko, N. A. Daniels, A. Guo, and Y. V. Li, “Autocrine effect of Zn2+ on the glucose-stimulated insulin secretion,” Endocrine, vol. 50, no. 1, pp. 110–122, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. A. J. M. Lubag, L. M. De Leon-Rodriguez, S. C. Burgess, and A. D. Sherry, “Noninvasive MRI of β-cell function using a Zn2+-responsive contrast agent,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 45, pp. 18400–18405, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. W.-J. Qian and R. T. Kennedy, “Spatial organization of Ca2+ entry and exocytosis in mouse pancreatic β-cells,” Biochemical and Biophysical Research Communications, vol. 286, no. 2, pp. 315–321, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Yi, G. Huang, and Z. Zhou, “Different role of zinc transporter 8 between type 1 diabetes mellitus and type 2 diabetes mellitus,” Journal of Diabetes Investigation, vol. 7, no. 4, pp. 459–465, 2016. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Solomou, G. Meur, E. Bellomo et al., “The zinc transporter Slc30a8/ZnT8 is required in a subpopulation of pancreatic α-cells for hypoglycemia-induced glucagon secretion,” The Journal of Biological Chemistry, vol. 290, no. 35, pp. 21432–21442, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Flannick, G. Thorleifsson, N. L. Beer et al., “Loss-of-function mutations in SLC30A8 protect against type 2 diabetes,” Nature Genetics, vol. 46, no. 4, pp. 357–363, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. G. A. Rutter and F. Chimienti, “SLC30A8 mutations in type 2 diabetes,” Diabetologia, vol. 58, no. 1, pp. 31–36, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Cauchi, S. D. Guerra, H. Choquet et al., “Meta-analysis and functional effects of the SLC30A8 rs13266634 polymorphism on isolated human pancreatic islets,” Molecular Genetics and Metabolism, vol. 100, no. 1, pp. 77–82, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. DeMenna, S. Puppala, G. Chittoor et al., “Association of common genetic variants with diabetes and metabolic syndrome related traits in the Arizona Insulin Resistance registry: a focus on Mexican American families in the Southwest,” Human Heredity, vol. 78, no. 1, pp. 47–58, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. J. W. MacCluer, M. P. Stern, L. Almasy et al., “Genetics of atherosclerosis risk factors in Mexican Americans,” Nutrition Reviews, vol. 57, no. 5, pp. S59–S65, 1999. View at Google Scholar · View at Scopus
  19. V. S. Voruganti, J. C. Lopez-Alvarenga, S. D. Nath et al., “Genetics of variation in HOMA-IR and cardiovascular risk factors in Mexican-Americans,” Journal of Molecular Medicine, vol. 86, no. 3, pp. 303–311, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. B. D. Mitchell, C. M. Kammerer, J. Blangero et al., “Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans: The San Antonio Family Heart Study,” Circulation, vol. 94, no. 9, pp. 2159–2170, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. American Diabetes Association, “Diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 27, supplement 1, pp. S5–S10, 2004. View at Publisher · View at Google Scholar
  22. A. H. Kissebah, G. E. Sonnenberg, J. Myklebust et al., “Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 26, pp. 14478–14483, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. Haffner, H. Miettinen, and M. P. Stern, “The homeostasis model in the San Antonio Heart Study,” Diabetes Care, vol. 20, no. 7, pp. 1087–1092, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. M. A. Carless, H. Kulkarni, M. Z. Kos et al., “Genetic effects on DNA methylation and its potential relevance for obesity in Mexican Americans,” PLoS ONE, vol. 8, no. 9, Article ID e73950, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Wang, M. Li, and H. Hakonarson, “ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data,” Nucleic Acids Research, vol. 38, no. 16, article e164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Boerwinkle and C. F. Sing, “The use of measured genotype information in the analysis of quantitative phenotypes in man. III. Simultaneous estimation of the frequencies and effects of the apolipoprotein E polymorphism and residual polygenetic effects on cholesterol, betalipoprotein and triglyceride levels,” Annals of Human Genetics, vol. 51, no. 3, pp. 211–226, 1987. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Li and L. Ji, “Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix,” Heredity, vol. 95, no. 3, pp. 221–227, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Blangero, H. H. H. Göring, J. W. Kent Jr. et al., “Quantitative trait nucleotide analysis using Bayesian model selection,” Human Biology, vol. 77, no. 5, pp. 541–559, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J. M. Peralta, M. Almeida, J. W. Kent Jr., and J. Blangero, “A variance component-based gene burden test,” BMC Proceedings, vol. 8, supplement 1, article S49, 2014. View at Publisher · View at Google Scholar
  30. J. Rungby, “Zinc, zinc transporters and diabetes,” Diabetologia, vol. 53, no. 8, pp. 1549–1551, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. L. D. Pound, S. A. Sarkar, A. Ustione et al., “The physiological effects of deleting the mouse Slc30a8 gene encoding zinc transporter-8 are influenced by gender and genetic background,” PLoS ONE, vol. 7, no. 7, Article ID e40972, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. L. D. Pound, S. A. Sarkar, R. K. P. Benninger et al., “Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion,” Biochemical Journal, vol. 421, no. 3, pp. 371–376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. R. K. Mitchell, M. Hu, P. L. Chabosseau et al., “Molecular genetic regulation of Slc30a8/ZnT8 reveals a positive association with glucose tolerance,” Molecular Endocrinology, vol. 30, no. 1, pp. 77–91, 2016. View at Publisher · View at Google Scholar · View at Scopus
  34. T. J. Nicolson, E. A. Bellomo, N. Wijesekara et al., “Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants,” Diabetes, vol. 58, no. 9, pp. 2070–2083, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. Y.-C. Chang, P.-H. Liu, Y.-H. Yu et al., “Validation of type 2 diabetes risk variants identified by genome-wide association studies in han chinese population: a replication study and meta-analysis,” PLoS ONE, vol. 9, no. 4, Article ID e95045, 2014. View at Publisher · View at Google Scholar · View at Scopus
  36. P. A. Gerber and G. A. Rutter, “The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus,” Antioxidants & Redox Signaling, 2016. View at Publisher · View at Google Scholar
  37. H. F. Gu, “Genetic, epigenetic and biological effects of zinc transporter (SLC30A8) in type 1 and type 2 diabetes,” Current Diabetes Reviews, In press.
  38. K. Uma Jyothi and B. M. Reddy, “Gene-gene and gene-environment interactions in the etiology of type 2 diabetes mellitus in the population of Hyderabad, India,” Meta Gene, vol. 5, pp. 9–20, 2015. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. Shan, W. Bao, Y. Zhang et al., “Interactions between zinc transporter-8 gene (SLC30A8) and plasma zinc concentrations for impaired glucose regulation and type 2 diabetes,” Diabetes, vol. 63, no. 5, pp. 1796–1803, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Heni, C. Ketterer, C. Thamer et al., “Glycemia determines the effect of type 2 diabetes risk genes on insulin secretion,” Diabetes, vol. 59, no. 12, pp. 3247–3252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. S.-M. Ruchat, C. E. Elks, R. J. F. Loos et al., “Evidence of interaction between type 2 diabetes susceptibility genes and dietary fat intake for adiposity and glucose homeostasis-related phenotypes,” Journal of Nutrigenetics and Nutrigenomics, vol. 2, no. 4-5, pp. 225–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. L. R. Ferguson, “Dissecting the nutrigenomics, diabetes, and gastrointestinal disease interface: from risk assessment to health intervention,” OMICS International, vol. 12, no. 4, pp. 237–244, 2008. View at Publisher · View at Google Scholar · View at Scopus