Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2016, Article ID 9213034, 8 pages
http://dx.doi.org/10.1155/2016/9213034
Research Article

N-Acetylcysteine Restores Sevoflurane Postconditioning Cardioprotection against Myocardial Ischemia-Reperfusion Injury in Diabetic Rats

1Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou 510642, China
2Department of Anesthesiology, The University of Hong Kong, Pokfulam, Hong Kong
3Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
4Department of Anesthesiology, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524023, China

Received 4 June 2015; Revised 30 July 2015; Accepted 26 August 2015

Academic Editor: Dake Qi

Copyright © 2016 Jiefu Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Zheng, M. Yang, F. Zhang et al., “Gender-related difference of sevoflurane postconditioning in isolated rat hearts: focus on phosphatidylinositol-3-kinase/Akt signaling,” The Journal of Surgical Research, vol. 170, no. 1, pp. e3–e9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Miki, T. Itoh, D. Sunaga, and T. Miura, “Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning,” Cardiovascular Diabetology, vol. 11, article 67, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Lacerda, S. Somers, L. H. Opie, and S. Lecour, “Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway,” Cardiovascular Research, vol. 84, no. 2, pp. 201–208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Drenger, I. A. Ostrovsky, M. Barak, Y. Nechemia-Arbely, E. Ziv, and J. H. Axelrod, “Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart: phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinase-mediated inhibition,” Anesthesiology, vol. 114, no. 6, pp. 1364–1372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Wang, S. Qiao, S. Lei et al., “N-acetylcysteine and allopurinol synergistically enhance cardiac adiponectin content and reduce myocardial reperfusion injury in diabetic rats,” PLoS ONE, vol. 6, no. 8, Article ID e23967, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Wang, X. Mao, H. Li et al., “N-Acetylcysteine and allopurinol up-regulated the Jak/STAT3 and PI3K/Akt pathways via adiponectin and attenuated myocardial postischemic injury in diabetes,” Free Radical Biology & Medicine, vol. 63, pp. 291–303, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Ferdous, P. K. Battiprolu, Y. G. Ni, B. A. Rothermel, and J. A. Hill, “FoxO, autophagy, and cardiac remodeling,” Journal of Cardiovascular Translational Research, vol. 3, no. 4, pp. 355–364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. M. Ronnebaum and C. Patterson, “The FoxO family in cardiac function and dysfunction,” Annual Review of Physiology, vol. 72, pp. 81–94, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Zhang, F. Peng, B. Gao, A. J. Ingram, and J. C. Krepinsky, “High glucose-induced RhoA activation requires caveolae and PKCβ1-mediated ROS generation,” American Journal of Physiology—Renal Physiology, vol. 302, no. 1, pp. 159–172, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. P. K. Battiprolu, B. Hojayev, N. Jiang et al., “Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice,” The Journal of Clinical Investigation, vol. 122, no. 3, pp. 1109–1118, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Puthanveetil, D. Zhang, Y. Wang et al., “Diabetes triggers a PARP1 mediated death pathway in the heart through participation of FoxO1,” Journal of Molecular and Cellular Cardiology, vol. 53, no. 5, pp. 677–686, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Zhan, T. Wang, W. Li, Z. C. Xu, W. Sun, and E. Xu, “Activation of Akt/FoxO signaling pathway contributes to induction of neuroprotection against transient global cerebral ischemia by hypoxic pre-conditioning in adult rats,” Journal of Neurochemistry, vol. 114, no. 3, pp. 897–908, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. J. Somers, M. Frias, L. Lacerda, L. H. Opie, and S. Lecour, “Interplay between SAFE and RISK pathways in sphingosine-1-phosphate-induced cardioprotection,” Cardiovascular Drugs and Therapy, vol. 26, no. 3, pp. 227–237, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. E. E. Kershaw and J. S. Flier, “Adipose tissue as an endocrine organ,” The Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2548–2556, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. D. S. Afonso, G. Castilho, M. S. F. Lavrador et al., “The impact of dietary fatty acids on macrophage cholesterol homeostasis,” Journal of Nutritional Biochemistry, vol. 25, no. 2, pp. 95–103, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Bao, L. Wang, Y. Xu et al., “Salvianolic acid B inhibits macrophage uptake of modified low density lipoprotein (mLDL) in a scavenger receptor CD36-dependent manner,” Atherosclerosis, vol. 223, no. 1, pp. 152–159, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Neculai, M. Schwake, M. Ravichandran et al., “Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36,” Nature, vol. 504, no. 7478, pp. 172–176, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Y. Pepino, O. Kuda, D. Samovski, and N. A. Abumrad, “Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism,” Annual Review of Nutrition, vol. 34, pp. 281–303, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Allick, F. Sprangers, G. J. Weverling et al., “Free fatty acids increase hepatic glycogen content in obese males,” Metabolism: Clinical and Experimental, vol. 53, no. 7, pp. 886–893, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Farhangkhoee, Z. A. Khan, Y. Barbin, and S. Chakrabarti, “Glucose-induced up-regulation of CD36 mediates oxidative stress and microvascular endothelial cell dysfunction,” Diabetologia, vol. 48, no. 7, pp. 1401–1410, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Hayek, K. Hussein, M. Aviram et al., “Macrophage-foam cell formation in streptozotocin-induced diabetic mice: stimulatory effect of glucose,” Atherosclerosis, vol. 183, no. 1, pp. 25–33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. D. M. Ouwens, M. Diamant, M. Fodor et al., “Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification,” Diabetologia, vol. 50, no. 9, pp. 1938–1948, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Kajimura, H. W. Lee, K. J. Riley et al., “Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1,” Cell Metabolism, vol. 17, no. 6, pp. 901–915, 2013. View at Google Scholar
  24. A. Bonen, M. L. Parolin, G. R. Steinberg et al., “Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36,” The FASEB Journal, vol. 18, no. 10, pp. 1144–1146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. C. C. Bastie, Z. Nahlé, T. McLoughlin et al., “FoxO1 stimulates fatty acid uptake and oxidation in muscle cells through CD36-dependent and -independent mechanisms,” The Journal of Biological Chemistry, vol. 280, no. 14, pp. 14222–14229, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Jiang, E. Shi, Y. Nakajima, and S. Sato, “Inducible nitric oxide synthase mediates delayed cardioprotection induced by morphine in vivo: evidence from pharmacologic inhibition and gene-knockout mice,” Anesthesiology, vol. 101, no. 1, pp. 82–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Li, W. Yao, M. G. Irwin et al., “Adiponectin ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction by concomitantly activating Nrf2 and Brg1,” Free Radical Biology and Medicine, vol. 84, pp. 311–321, 2015. View at Publisher · View at Google Scholar
  28. Y. Liu, J. Jin, S. Qiao et al., “Inhibition of PKCβ2 overexpression ameliorates myocardial ischaemia/reperfusion injury in diabetic rats via restoring caveolin-3/Akt signaling,” Clinical Science, vol. 129, no. 4, pp. 331–344, 2015. View at Publisher · View at Google Scholar
  29. J. Knapp, G. Bergmann, T. Bruckner, N. Russ, B. W. Böttiger, and E. Popp, “Pre- and postconditioning effect of Sevoflurane on myocardial dysfunction after cardiopulmonary resuscitation in rats,” Resuscitation, vol. 84, no. 10, pp. 1450–1455, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Di Filippo, S. Cuzzocrea, F. Rossi, R. Marfella, and M. D'Amico, “Oxidative stress as the leading cause of acute myocardial infarction in diabetics,” Cardiovascular Drug Reviews, vol. 24, no. 2, pp. 77–87, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Guo, Z. Xia, J. Jiang, and J. H. McNeill, “Downregulation of NADPH oxidase, antioxidant enzymes, and inflammatory markers in the heart of streptozotocin-induced diabetic rats by N-acetyl-L-cysteine,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 292, no. 4, pp. H1728–H1736, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. R. H. Christenson, R. T. Vollmer, E. M. Ohman et al., “Relation of temporal creatine kinase-mb release and outcome after thrombolytic therapy for acute myocardial infarction,” The American Journal of Cardiology, vol. 85, no. 5, pp. 543–547, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. A. T. Turer, K. W. Mahaffey, D. Gallup et al., “Enzyme estimates of infarct size correlate with functional and clinical outcomes in the setting of ST-segment elevation myocardial infarction,” Current Controlled Trials in Cardiovascular Medicine, vol. 6, article 12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. Xia, K.-H. Kuo, D. V. Godin, M. J. Walker, M. C. Y. Tao, and D. M. Ansley, “15-F2t-isoprostane exacerbates myocardial ischemia-reperfusion injury of isolated rat hearts,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 289, no. 4, pp. H1366–H1372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. C. R. Roe, “Validity of estimating myocardial infarct size from serial measurements of enzyme activity in the serum,” Clinical Chemistry, vol. 23, no. 10, pp. 1807–1812, 1977. View at Google Scholar · View at Scopus
  36. Y. Saitoh, H. Hattori, N. Sanbe, H. Nakajima, M. Akatu, and M. Murakawa, “Delayed recovery of vecuronium neuromuscular block in diabetic patients during sevoflurane anesthesia,” Canadian Journal of Anesthesia, vol. 52, no. 5, pp. 467–473, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Kadoi, K.-I. Takahashi, S. Saito, and F. Goto, “The comparative effects of sevoflurane versus isoflurane on cerebrovascular carbon dioxide reactivity in patients with diabetes mellitus,” Anesthesia and Analgesia, vol. 103, no. 1, pp. 168–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. C.-P. Hsu, P. Zhai, T. Yamamoto et al., “Silent information regulator 1 protects the heart from ischemia/reperfusion,” Circulation, vol. 122, no. 21, pp. 2170–2182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Sengupta, J. D. Molkentin, J.-H. Paik, R. A. DePinho, and K. E. Yutzey, “FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress,” The Journal of Biological Chemistry, vol. 286, no. 9, pp. 7468–7478, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Pei, Y. Qu, X. Lu et al., “Cardiac-derived adiponectin induced by long-term insulin treatment ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic mice via AMPK signaling,” Basic Research in Cardiology, vol. 108, no. 1, article 322, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Shibata, K. Sato, D. R. Pimentel et al., “Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms,” Nature Medicine, vol. 11, no. 10, pp. 1096–1103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Baldasseroni, A. Antenore, C. Di Serio et al., “Adiponectin, diabetes and ischemic heart failure: a challenging relationship,” Cardiovascular Diabetology, vol. 11, article 151, 2012. View at Publisher · View at Google Scholar · View at Scopus