Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2017, Article ID 6549242, 8 pages
https://doi.org/10.1155/2017/6549242
Research Article

The Association between Monocyte Surface CD163 and Insulin Resistance in Patients with Type 2 Diabetes

1Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
2Department of Premier Preventive Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
3Department of Vascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan

Correspondence should be addressed to Koka Motoyama; pj.ca.uc-akaso.dem@6779931m

Received 30 June 2017; Accepted 22 November 2017; Published 28 December 2017

Academic Editor: Sandeep Singh

Copyright © 2017 Reina Kawarabayashi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kristiansen, J. H. Graversen, C. Jacobsen et al., “Identification of the haemoglobin scavenger receptor,” Nature, vol. 409, no. 6817, pp. 198–201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. H. J. Moller, “Soluble CD163,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 72, no. 1, pp. 1–13, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. J. H. Thomsen, A. Etzerodt, P. Svendsen, and S. K. Moestrup, “The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging,” Oxidative Medicine and Cellular Longevity, vol. 2013, Article ID 523652, 11 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. N. G. Abraham and G. Drummond, “CD163-mediated hemoglobin-heme uptake activates macrophage HO-1, providing an antiinflammatory function,” Circulation Research, vol. 99, no. 9, pp. 911–914, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Gaini, O. G. Koldkjaer, S. S. Pedersen, C. Pedersen, S. K. Moestrup, and H. J. Møller, “Soluble haemoglobin scavenger receptor (sCD163) in patients with suspected community-acquired infections,” APMIS, vol. 114, no. 2, pp. 103–111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Hiraoka, N. Horiike, S. M. Akbar, K. Michitaka, T. Matsuyama, and M. Onji, “Soluble CD163 in patients with liver diseases: very high levels of soluble CD163 in patients with fulminant hepatic failure,” Journal of Gastroenterology, vol. 40, no. 1, pp. 52–56, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Ananworanich, S. J. Kerr, T. Jaimulwong et al., “Soluble CD163 and monocyte populations in response to antiretroviral therapy and in relationship with neuropsychological testing among HIV-infected children,” Journal of Virus Eradication, vol. 1, no. 3, pp. 196–202, 2015. View at Google Scholar
  8. L. C. Ndhlovu, M. L. D'antoni, J. Ananworanich et al., “Loss of CCR2 expressing non-classical monocytes are associated with cognitive impairment in antiretroviral therapy-naive HIV-infected Thais,” Journal of Neuroimmunology, vol. 288, pp. 25–33, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. J. A. Moreno, A. Ortega-Gomez, S. Delbosc et al., “In vitro and in vivo evidence for the role of elastase shedding of CD163 in human atherothrombosis,” European Heart Journal, vol. 33, no. 2, pp. 252–263, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. M. V. Zanni, T. H. Burdo, H. Makimura, K. C. Williams, and S. K. Grinspoon, “Relationship between monocyte/macrophage activation marker soluble CD163 and insulin resistance in obese and normal-weight subjects,” Clinical Endocrinology, vol. 77, no. 3, pp. 385–390, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. L. P. Sorensen, T. Parkner, E. Sondergaard, B. M. Bibby, H. J. Moller, and S. Nielsen, “Visceral obesity is associated with increased soluble CD163 concentration in men with type 2 diabetes mellitus,” Endocrine Connections, vol. 4, no. 1, pp. 27–36, 2015. View at Publisher · View at Google Scholar
  12. T. Parkner, L. P. Sorensen, A. R. Nielsen et al., “Soluble CD163: a biomarker linking macrophages and insulin resistance,” Diabetologia, vol. 55, no. 6, pp. 1856–1862, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Toupchian, G. Sotoudeh, A. Mansoori et al., “Effects of DHA-enriched fish oil on monocyte/macrophage activation marker sCD163, asymmetric dimethyl arginine, and insulin resistance in type 2 diabetic patients,” Journal of Clinical Lipidology, vol. 10, no. 4, pp. 798–807, 2016. View at Publisher · View at Google Scholar · View at Scopus
  14. H. J. Moller, R. Frikke-Schmidt, S. K. Moestrup, B. G. Nordestgaard, and A. Tybjaerg-Hansen, “Serum soluble CD163 predicts risk of type 2 diabetes in the general population,” Clinical Chemistry, vol. 57, no. 2, pp. 291–297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Ugocsai, S. Barlage, A. Dada, and G. Schmitz, “Regulation of surface CD163 expression and cellular effects of receptor mediated hemoglobin-haptoglobin uptake on human monocytes and macrophages,” Cytometry Part A, vol. 69, no. 3, pp. 203–205, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Kračmerová, L. Rossmeislová, Z. Kováčová et al., “Soluble CD163 is associated with CD163 mRNA expression in adipose tissue and with insulin sensitivity in steady-state condition but not in response to calorie restriction,” The Journal of Clinical Endocrinology & Metabolism, vol. 99, no. 3, pp. E528–E535, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Min, B. Brooks, J. Wong et al., “Monocyte CD163 is altered in association with diabetic complications: possible protective role,” Journal of Leukocyte Biology, vol. 100, no. 6, pp. 1375–1383, 2016. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Buechler, M. Ritter, E. Orsó, T. Langmann, J. Klucken, and G. Schmitz, “Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli,” Journal of Leukocyte Biology, vol. 67, no. 1, pp. 97–103, 2000. View at Google Scholar
  19. M. Moniuszko, A. Bodzenta-Lukaszyk, K. Kowal, D. Lenczewska, and M. Dabrowska, “Enhanced frequencies of CD14++CD16+, but not CD14+CD16+, peripheral blood monocytes in severe asthmatic patients,” Clinical Immunology, vol. 130, no. 3, pp. 338–346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Kowal, R. Silver, E. Slawinska, M. Bielecki, L. Chyczewski, and O. Kowal-Bielecka, “CD163 and its role in inflammation,” Folia Histochemica et Cytobiologica, vol. 49, no. 3, pp. 365–374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. American Diabetes Association, “Standards of medical care in diabetes–2014,” Diabetes Care, vol. 37, Supplement 1, pp. S14–S80, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. A. P. Levy, K. R. Purushothaman, N. S. Levy et al., “Downregulation of the hemoglobin scavenger receptor in individuals with diabetes and the Hp 2-2 genotype: implications for the response to intraplaque hemorrhage and plaque vulnerability,” Circulation Research, vol. 101, no. 1, pp. 106–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Yamazaki, M. Emoto, T. Morioka et al., “Clinical impact of the leptin to soluble leptin receptor ratio on subclinical carotid atherosclerosis in patients with type 2 diabetes,” Journal of Atherosclerosis and Thrombosis, vol. 20, no. 2, pp. 186–194, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher, and R. C. Turner, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Emoto, Y. Nishizawa, K. Maekawa et al., “Homeostasis model assessment as a clinical index of insulin resistance in type 2 diabetic patients treated with sulfonylureas,” Diabetes Care, vol. 22, no. 5, pp. 818–822, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Yokoyama, M. Emoto, S. Fujiwara et al., “Quantitative insulin sensitivity check index and the reciprocal index of homeostasis model assessment in normal range weight and moderately obese type 2 diabetic patients,” Diabetes Care, vol. 26, no. 8, pp. 2426–2432, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Yokoyama, M. Emoto, S. Fujiwara et al., “Quantitative insulin sensitivity check index and the reciprocal index of homeostasis model assessment are useful indexes of insulin resistance in type 2 diabetic patients with wide range of fasting plasma glucose,” The Journal of Clinical Endocrinology & Metabolism, vol. 89, no. 3, pp. 1481–1484, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Chinetti-Gbaguidi, S. Colin, and B. Staels, “Macrophage subsets in atherosclerosis,” Nature Reviews Cardiology, vol. 12, no. 1, pp. 10–17, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. C. N. Lumeng, J. L. Bodzin, and A. R. Saltiel, “Obesity induces a phenotypic switch in adipose tissue macrophage polarization,” The Journal of Clinical Investigation, vol. 117, no. 1, pp. 175–184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Etzerodt, M. B. Maniecki, K. Moller, H. J. Moller, and S. K. Moestrup, “Tumor necrosis factor α-converting enzyme (TACE/ADAM17) mediates ectodomain shedding of the scavenger receptor CD163,” Journal of Leukocyte Biology, vol. 88, no. 6, pp. 1201–1205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Etzerodt and S. K. Moestrup, “CD163 and inflammation: biological, diagnostic, and therapeutic aspects,” Antioxidants & Redox Signaling, vol. 18, no. 17, pp. 2352–2363, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. H. J. Kim, T. Higashimori, S. Y. Park et al., “Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo,” Diabetes, vol. 53, no. 4, pp. 1060–1067, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. T. M. Wallace and D. R. Matthews, “The assessment of insulin resistance in man,” Diabetic Medicine, vol. 19, no. 7, pp. 527–534, 2002. View at Publisher · View at Google Scholar · View at Scopus