Table of Contents Author Guidelines Submit a Manuscript
Journal of Engineering
Volume 2013, Article ID 183068, 9 pages
http://dx.doi.org/10.1155/2013/183068
Research Article

Countermeasures Assessment of Liquefaction-Induced Lateral Deformation in a Slope Ground System

1Dipartimento Economia e Tecnologia, Università degli Studi della Repubblica di San Marino, Via Salita alla Rocca, 44. San Marino Rep., San Marino
2Dipartimento Ingegneria Meccanica e Civile DIMeC, Università degli Studi di Modena e Reggio Emilia, Via Vignolese 905, Modena, Italy

Received 29 August 2012; Revised 6 December 2012; Accepted 6 December 2012

Academic Editor: Lucian Dascalescu

Copyright © 2013 Davide Forcellini and Angelo Marcello Tarantino. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Kishida, “Damage to reinforced concrete buildings in Niigata city with special reference to foundation engineering,” Soils Foundation, vol. 6, no. 1, pp. 71–88, 1966. View at Google Scholar
  2. Y. Ohsaki, “Niigata earthquake, 1964 building damage and soil condition,” Soils Foundations, vol. 6, no. 2, pp. 14–37, 1966. View at Google Scholar
  3. H. B. Seed and I. M. Idriss, “Analysis of soil liquefaction: Niigata earthquake,” Journal of Soil Mechanics and Foundations, vol. 93, no. 3, pp. 83–108, 1967. View at Google Scholar
  4. Y. Yoshimi and K. Tokimatsu, “Settlement of buildings on saturated sand during earthquakes,” Soils and Foundations, vol. 17, no. 1, pp. 23–38, 1977. View at Google Scholar · View at Scopus
  5. K. Tokimatsu, S. Midorikawa, S. Tamura, S. Kuwayama, and A. Abe, “Preliminary report on the geotechnical aspects of the Philippine earthquake of July 16, 1990,” in Proceedings of the 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, pp. 357–364, University of Missouri-Rolla, St. Louis, Mo, USA, 1991.
  6. T. Adachi, S. Iwai, M. Yasui, and Y. Sato, “Settlement of inclination of reinforced concrete buildings in Dagupan city due to liquefaction during 1990 Philippine earthquake,” in Proceedings of the 10th World Conference on Earthquake Engineering, pp. 147–152, Rotterdam, The Netherlands, 1992.
  7. K. Ishihara, A. A. Acacio, and I. Towhata, “Liquefaction-induced ground damage in Dagupan in the July 16, 1990 Luzon earthquake,” Soils and Foundations, vol. 33, no. 1, pp. 133–154, 1993. View at Google Scholar · View at Scopus
  8. K. Tokimatsu, H. Kojimaa, S. Kuwayama, A. Abe, and S. Midorikawa, “Liquefaction-induced damage to buildings in 1990 Luzon Earthquake,” Journal of Geotechnical Engineering, vol. 120, no. 2, pp. 290–307, 1994. View at Google Scholar · View at Scopus
  9. Earthquake Engineering Research Institute (EERI), “Kocaeli, Turkey, earthquake of august 17, 1999 reconnaissance report,” Earthquake Spectra, 2000.
  10. Earthquake Engineering Research Institute (EERI), “Chi-chi, Taiwan, earthquake of September 21, 1999, reconnaissance report,” Earthquake Spectra, 2001.
  11. K. Irikura and S. Kurahashi, “Source model for generating strong ground motions during the 11 March 2011 off Tohoku, Japan earthquake,” in Proceedings of the Japan Geoscience Union International Symposium, Makuhari, Chiba, Japan, 2011.
  12. S. Bhattacharya, M. Hyodo, K. Goda, T. Tazoh, and C. A. Taylor, “Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake,” Soil Dynamics and Earthquake Engineering, vol. 31, pp. 1618–1628, 2011. View at Google Scholar
  13. D. K. Keefer, “Landslides caused by earthquakes,” Geological Society of America Bulletin, vol. 95, no. 4, pp. 406–421, 1984. View at Google Scholar · View at Scopus
  14. G. Tosatti, D. Castaldini, M. Barbieri et al., “Additional causes of seismically-related landslides in the Northern Apennines,” Italy. Revista De Geomorfologie, no. 10, pp. 5–21, 2008. View at Google Scholar
  15. H. J. Priebe, “The prevention of liquefaction by vibroreplacement,” in Proceedings of the 2nd International Conference on Earthquake Resistant Construction and Design, S. A. Savidis, Ed., pp. 211–219, Balkema, Rotterdam, The Netherlands, 1991.
  16. J. K. Mitchell, C. D. P. Baxter, and T. C. Munson, “Performance of improved ground during earthquakes,” in Proceedings of the Conference of the Geotechnical Engineering Division of the ASCE in Conjunction with the ASCE Convention, pp. 1–36, October 1995. View at Scopus
  17. R. Boulanger, I. Idriss, D. Stewart, Y. Hashash, and B. Schmidt, “Drainage capacity of stone columns or gravel drains for mitigating liquefaction,” Geotechique Special Publications, vol. 1, no. 75, pp. 678–690, 1998. View at Google Scholar
  18. Japanese Geotechnical Society (JGS), Special Issue on Geotechnical Aspects of the January 17, 1995 Hyogoken-Nanbu Earthquake, Soils Foundations, 1998.
  19. S. Thevanayagam, G. R. Martin, T. Shenthan, and J. Liang, “Post-liquefaction pore pressure dissipation and densification in silty soils,” in Proceedings of the 4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, S. Prakash, Ed., no. 4.28, San Diego, Calif, USA, 2001.
  20. A. Elgamal, E. Parra, Z. Yang, and K. Adalier, “Numerical analysis of embankment foundation liquefaction countermeasures,” Journal of Earthquake Engineering, vol. 6, no. 4, pp. 447–471, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Elgamal, J. Lu, and D. Forcellini, “Mitigation of liquefaction-induced lateral deformation in a sloping stratum: three-dimensional numerical simulation,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 135, no. 11, pp. 1672–1682, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Mazzoni, F. McKenna, M. H. Scott, and G. L. Fenves, OpenSystem For Earthquake Engineering Simulation User Manual, University of California, Berkeley, Calif, USA, 2006, http://opensees.berkeley.edu/.
  23. A. H. C. Chan, A unified finite element solution to static and dynamic problems in geomechanics [Ph.D. thesis], University College of Swansea, Swansea, UK, 1988.
  24. O. C. Zienkiewicz, A. H. C. Chan, M. Pastor, D. K. Paul, and T. Shiomi, “Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I. Fully saturated problems,” Proceedings of the Royal Society of London A, vol. 429, no. 1877, pp. 285–309, 1990. View at Google Scholar · View at Scopus
  25. Z. Yang, Numerical modeling of earthquake site response including dilation and liquefaction [Ph.D. thesis], Columbia University, New York, NY, USA, 2000.
  26. Z. Yang and A. Elgamal, “Influence of permeability on liquefaction-induced shear deformation,” Journal of Engineering Mechanics, vol. 128, no. 7, pp. 720–729, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Elgamal, Z. Yang, E. Parra, and A. Ragheb, “Modeling of cyclic mobility in saturated cohesionless soils,” International Journal of Plasticity, vol. 19, no. 6, pp. 883–905, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Yang, A. Elgamal, and E. Parra, “Computational model for cyclic mobility and associated shear deformation,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 129, no. 12, pp. 1119–1127, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Parra, Numerical modelling of liquefaction and lateral ground deformation including cyclic mobility and dilation response in soil systems [Ph.D. thesis], Department of Civil Engineering, Renseealear Polytechnic Institute Troy, New York, NY, USA, 1996.
  30. J. H. Prevost, “A simple plasticity theory for frictional cohesionless soils,” International Journal of Soil Dynamics and Earthquake Engineering, vol. 4, no. 1, pp. 9–17, 1985. View at Google Scholar · View at Scopus
  31. J. Lysmer and A. M. Kuhlemeyer, “Finite dynamic model for infinite media,” Journal of the Engineering Mechanics Division, vol. 95, pp. 859–877, 1969. View at Google Scholar
  32. W. B. Joyner and A. T. F. Chen, “Calculation of nonlinear ground response in earthquakes,” Bulletin of the Seismological Society of America, vol. 65, no. 5, pp. 1315–1336, 1975. View at Google Scholar