Table of Contents Author Guidelines Submit a Manuscript
Journal of Engineering
Volume 2013, Article ID 301265, 10 pages
Research Article

Energy Analysis in Combined Reforming of Propane

CEPD Division, National Chemical Laboratory, Pune 411008, India

Received 30 November 2012; Revised 21 May 2013; Accepted 21 May 2013

Academic Editor: Mo Yang

Copyright © 2013 K. Moon and Ganesh R. Kale. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Combined (steam and CO2) reforming is one of the methods to produce syngas for different applications. An energy requirement analysis of steam reforming to dry reforming with intermediate steps of steam reduction and equivalent CO2 addition to the feed fuel for syngas generation has been done to identify condition for optimum process operation. Thermodynamic equilibrium data for combined reforming was generated for temperature range of 400–1000°C at 1 bar pressure and combined oxidant (CO2 + H2O) stream to propane (fuel) ratio of 3, 6, and 9 by employing the Gibbs free energy minimization algorithm of HSC Chemistry software 5.1. Total energy requirement including preheating and reaction enthalpy calculations were done using the equilibrium product composition. Carbon and methane formation was significantly reduced in combined reforming than pure dry reforming, while the energy requirements were lower than pure steam reforming. Temperatures of minimum energy requirement were found in the data analysis of combined reforming which were optimum for the process.