Table of Contents Author Guidelines Submit a Manuscript
Journal of Engineering
Volume 2013 (2013), Article ID 375628, 9 pages
http://dx.doi.org/10.1155/2013/375628
Research Article

Using the Analytical Network Process to Select the Best Strategy for Reducing Risks in a Supply Chain

1Department of Industrial Engineering, Firoozkooh Branch, Islamic Azad University, P.O. Box 148, Firoozkooh, Iran
2Department of Industrial Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran

Received 26 November 2012; Revised 19 February 2013; Accepted 12 March 2013

Academic Editor: Gulfem Tuzkaya

Copyright © 2013 L. Hosseini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper considers four types of the most prominent risks in the supply chain. Their subcriteria and relations between them and within the network are also considered. In a supply chain, risks are mostly created by fluctuations. The aim of this study is to adopt a strategy for eliminating or reducing risks in a supply chain network. Having various solutions helps the supply chain to be resilient. Therefore, five alternatives are considered, namely, total quality management (TQM), leanness, alignment, adaptability, and agility. This paper develops a new network of supply chain risks by considering the interactions between risks. Perhaps, the network elements have interacted with some or all of the factors (clusters) or subfactors. We constitute supply chain risks in the analytic network process (ANP), which attracted less attention in the previous studies. Most of the studies about making a decision in supply chains have been applied in analytic hierarchy process (AHP) network. The present study considers the ANP as a well-known multicriteria decision making (MCDM) technique to choose the best alternative, because of the interdependency and feedbacks of different levels of the network. Finally, the ANP selects TQM as the best alternative among the considered ones.