Table of Contents Author Guidelines Submit a Manuscript
Journal of Engineering
Volume 2013 (2013), Article ID 537986, 19 pages
http://dx.doi.org/10.1155/2013/537986
Review Article

The Most Important Maglev Applications

Iran Maglev Technology (IMT), Tehran 1997857631, Iran

Received 5 December 2012; Accepted 19 February 2013

Academic Editor: Run-Cang Sun

Copyright © 2013 Hamid Yaghoubi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Livingston, Rising Force: The Magic of Magnetic Levitation, Harvard University Press, 2011.
  2. H. Yaghoubi, N. Barazi, and M. R. Aoliaei, “Maglev, ch 6,” in Infrastructure Design, Signalling and Security in Railway, pp. 123–176, InTech, Rijeka, Croatia, 2012. View at Google Scholar
  3. S. C. Paschall II, Design, fabrication, and control of a single actuator magnetic levitation system [Senior Honors Thesis], Department of Mechanical Engineering, Texas A&M University, 2002.
  4. S. C. Paschall II and W. J. Kim, Design, Fabrication, and Control of a Single Actuator Maglev Test Bed, Department of Mechanical Engineering, Texas A&M University, 2002.
  5. A. Ambike, W. J. Kim, and K. Ji, “Real-time operating environment for networked control systems,” in Proceedings of the American Control Conference (ACC '05), pp. 2353–2358, Portland, Ore, USA, June 2005. View at Scopus
  6. W. J. Kim, K. Ji, and A. Ambike, “Real-Time operating environment for networked control systems,” IEEE Transactions on Automation Science and Engineering, vol. 3, no. 3, pp. 287–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. E. Hoffman, A search for alternative electronic order in the high temperature superconductor Bi2Sr2CaCu2O8+δ by scanning tunneling microscopy [Ph.D. dissertation], University of California, Berkeley, Calif, USA, 2003.
  8. H. Yaghoubi, Magnetically Levitated Trains, Maglev, vol. 1, Pooyan Farnegar Publisher, Tehran, Iran, 2008.
  9. H. Yaghoubi, “The most important advantages of magnetically levitated trains,” in Proceedings of the 11th International Conference of Chinese Transportation Professionals (ICCTP '11), American Society of Civil Engineers (ASCE) Publisher, Nanjing, China, 2011.
  10. H. Yaghoubi, N. Barazi, K. Kahkeshan, A. Zare, and H. Ghazanfari, “Technical comparison of maglev and rail rapid transit systems,” in Proceedings of the 21st International Conference on Magnetically Levitated Systems and Linear Drives (MAGLEV '11), Daejeon Convention Center, Daejoen, Republic of Korea, 2011.
  11. H. Yaghoubi and M. S. Hoseini, “Mechanical assessment of maglev vehicle—a proposal for implementing maglev trains in Iran,” in Proceedings of the ASME 10th Biennial Conference on Engineering Systems Design and Analysis (ESDA '10), pp. 299–306, Yeditepe University, Istanbul, Turkey, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Behbahani, H. Yaghoubi, and M. A. Rezvani, “Development of technical and economical models for widespread application of magnetic levitation system in public transport,” International Journal of Civil Engineering, vol. 10, no. 1, pp. 13–24, 2012. View at Google Scholar
  13. H. Yaghoubi and H. Ziari, “Assessment of structural analysis and design principles for maglev guideway: a case-study for implementing low-speed maglev systems in Iran,” in Proceedings of the 1st International Conference on Railway Engineering, High-speed Railway, Heavy Haul Railway and Urban Rail Transit, pp. 15–23, China Railway Publishing House, Beijing Jiaotong University, Beijing, China, 2010.
  14. H. Yaghoubi and M. A. Rezvani, “Development of Maglev guideway loading model,” Journal of Transportation Engineering, vol. 137, no. 3, pp. 201–213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Yaghoubi and H. Ziari, “Development of a maglev vehicle/guideway system interaction model and comparison of the guideway structural analysis with railway bridge structures,” Journal of Transportation Engineering, vol. 137, no. 2, pp. 140–154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Behbahani and H. Yaghoubi, “Procedures for safety and risk assessment of maglev systems: a case-study for long-distance and high-speed maglev project in Mashhad-Tehran route,” in Proceedings of the 1st International Conference on Railway Engineering, High-speed Railway, Heavy Haul Railway and Urban Rail Transit, pp. 73–83, China Railway Publishing House, Beijing Jiaotong University, Beijing, China, 2010.
  17. J. R. Hull, J. Fiske, K. Ricci, and M. Ricci, “Analysis of levitational systems for a superconducting launch ring,” in Proceedings of the Applied Superconductivity Conference, Seattle, Wash, USA, 2006.
  18. O. J. Fiske, M. R. Ricci, K. Ricci, and J. R. Hull, “The launch ring—circular em accelerators for low cost orbital launch,” in Proceedings of the Space Conference, pp. 750–762, American Institute of Aeronautics and Astronautics, September 2006. View at Scopus
  19. J. R. Hull and T. M. Mulcahy, “Magnetically levitated space elevator to low earth orbit,” in Proceedings of the 3rd International Symposium on Linear Drives for Industrial Applications, pp. 42–47, Nagano, Japan, 2001.
  20. J. R. Hull, T. M. Mulcahy, and R. C. Niemann, “Magnetically levitated space elevator to low earth orbit,” Advances in Cryogenic Engineering, vol. 47, pp. 1711–1718, 2002. View at Google Scholar
  21. I. R. McNab, “Launch to space with an electromagnetic railgun,” IEEE Transactions on Magnetics, vol. 39, no. 1, pp. 295–304, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. J. H. Schultz, A. Radovinsky, R. J. Thome et al., “Superconducting magnets for Maglifter launch assist sleds,” IEEE Transactions on Applied Superconductivity, vol. 11, no. 1, pp. 1749–1752, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Horng, “Direct current brushless motor of radial air-gap,” US Patent No. 6,538,357, 2003.
  24. C. T. Liu, T. S. Chiang, and A. Horng, “Three-dimensional flux analysis and guidance path design of an axial-flow radial-flux permanent magnet motor,” in Proceedings of the 11th Biennial IEEE Conference on Electromagnetic Field Computation, Sheraton Grande Walkerhill Hotel, Seoul, Republic of Korea, 2004.
  25. C. T. Liu, T. S. Chiang, and A. Horng, “Three-dimensional force analyses of an axial-flow radial-flux permanent magnet motor with magnetic suspension,” in Proceedings of the IEEE/IAS 39th Annual Meeting, Weatin Hotel, Seattle, Wash, USA, 2004.
  26. J. F. Gieras and M. Wing, Permanent Magnet Motor Technology, Marcel Dekker, New York, NY, USA, 2002.
  27. H. Wu, Z. Wang, and X. Lv, “Design and simulation of axial flow maglev blood pump,” International Journal of Information Engineering and Electronic Business, vol. 3, no. 2, pp. 42–48, 2011. View at Google Scholar
  28. H. Wu, Z. Wang, and Y. Hu, “Study on support properties of axial maglev blood pump,” Applied Mechanics and Materials, vol. 150, pp. 187–193, 2012. View at Google Scholar
  29. K. X. Qian and T. Jing, “Use of PM bearings in permanent maglev centrifugal pumps for stability investigation,” in Proceedings of the 1st International Conference on Biomedical Engineering and Informatics (BMEI '08), pp. 535–538, Sanya, China, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. K. X. Qian, P. Zeng, W. M. Ru, and H. Y. Yuan, “New concepts and new design of permanent maglev rotary artificial heart blood pumps,” Medical Engineering and Physics, vol. 28, no. 4, pp. 383–388, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. K. X. Qian, W. M. Ru, H. Wang, and T. Jing, “A Mini axial and a permanent maglev radial heart pump,” in Proceedings of the 3rd Conference of World Association of Chinese for Biomedical Engineering, Bangkok, Thailand, 2007.
  32. C. N. Pai, T. Shinshi, and A. Shimokohbe, “Sensorless measurement of pulsatile flow rate using a disturbance force observer in a magnetically levitated centrifugal blood pump during ventricular assistance,” Flow Measurement and Instrumentation, vol. 21, no. 1, pp. 33–39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. D. Noh, J. F. Antaki, M. Ricci et al., “Magnetic design for the PediaFlow ventricular assist device,” Artificial Organs, vol. 32, no. 2, pp. 127–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. M. Gardiner, J. Wu, M. D. Noh et al., “Thermal analysis of the PediaFlow pediatric ventricular assist device,” ASAIO Journal, vol. 53, no. 1, pp. 65–73, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. H. S. Borovetz, S. Badylak, J. R. Boston et al., “Towards the development of a pediatric ventricular assist device,” Cell Transplantation, vol. 15, supplement 1, pp. 69–74, 2006. View at Google Scholar
  36. M. D. Noh, J. F. Antaki, M. Ricci et al., “Magnetic levitation design for the pediaFlow ventricular assist device,” in Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM '05), pp. 1077–1082, July 2005. View at Scopus
  37. K. A. Mirica, S. T. Phillips, C. R. MacE, and G. M. Whitesides, “Magnetic levitation in the analysis of foods and water,” Journal of Agricultural and Food Chemistry, vol. 58, no. 11, pp. 6565–6569, 2010. View at Publisher · View at Google Scholar · View at Scopus