Table of Contents Author Guidelines Submit a Manuscript
Journal of Engineering
Volume 2013, Article ID 543940, 9 pages
http://dx.doi.org/10.1155/2013/543940
Research Article

Hierarchical Neural Regression Models for Customer Churn Prediction

1Department of Finance Management, Faculty of Humanities and social Sciences, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
2Department of Industrial Engineering, College of Engineering, University of Tehran, P.O. Box 11155/4563, Tehran, Iran

Received 25 November 2012; Revised 27 January 2013; Accepted 1 February 2013

Academic Editor: Jie Zhou

Copyright © 2013 Golshan Mohammadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Coussement and D. Van den Poel, “Integrating the voice of customers through call center emails into a decision support system for churn prediction,” Information and Management, vol. 45, no. 3, pp. 164–174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. E. W. T. Ngai, L. Xiu, and D. C. K. Chau, “Application of data mining techniques in customer relationship management: a literature review and classification,” Expert Systems with Applications, vol. 36, no. 2, pp. 2592–2602, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Hung and C. F. Tsai, “Market segmentation based on hierarchical self-organizing map for markets of multimedia on demand,” Expert Systems with Applications, vol. 34, no. 1, pp. 780–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. J. A. Berry and G. S. Linoff, Data Mining Techniques: For Marketing, Sales, and Customer Support, John Wiley & Sons, 2003.
  5. D. Van den Poel and B. Larivière, “Customer attrition analysis for financial services using proportional hazard models,” European Journal of Operational Research, vol. 157, no. 1, pp. 196–217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Kisioglu and Y. I. Topcu, “Applying Bayesian Belief Network approach to customer churn analysis: a case study on the telecom industry of Turkey,” Expert Systems with Applications, vol. 38, no. 6, pp. 7151–7157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. C. F. Tsai and Y. H. Lu, “Customer churn prediction by hybrid neural networks,” Expert Systems with Applications, vol. 36, no. 10, pp. 12547–12553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Verbeke, K. Dejaeger, D. Martens, J. Hur, and B. Baesens, “New insights into churn prediction in the telecommunication sector: a profit driven data mining approach,” European Journal of Operational Research, vol. 218, pp. 211–229, 2011. View at Google Scholar
  9. B. Baesens, G. Verstraeten, D. Van den Poel, M. Egmont-Petersen, P. Van Kenhove, and J. Vanthienen, “Bayesian network classifiers for identifying the slope of the customer lifecycle of long-life customers,” European Journal of Operational Research, vol. 156, no. 2, pp. 508–523, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Buckinx and D. Van den Poel, “Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting,” European Journal of Operational Research, vol. 164, no. 1, pp. 252–268, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Burez and D. Van den Poel, “CRM at a pay-TV company: using analytical models to reduce customer attrition by targeted marketing for subscription services,” Expert Systems with Applications, vol. 32, no. 2, pp. 277–288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Coussement and D. Van den Poel, “Churn prediction in subscription services: an application of support vector machines while comparing two parameter-selection techniques,” Expert Systems with Applications, vol. 34, no. 1, pp. 313–327, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Glady, B. Baesens, and C. Croux, “Modeling churn using customer lifetime value,” European Journal of Operational Research, vol. 197, no. 1, pp. 402–411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Yu, S. Guo, J. Guo, and X. Huang, “An extended support vector machine forecasting framework for customer churn in e-commerce,” Expert Systems with Applications, vol. 38, no. 3, pp. 1425–1430, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Qi, L. Zhang, Y. Liu et al., “ADTreesLogit model for customer churn prediction,” Annals of Operations Research, vol. 168, no. 1, pp. 247–265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Huang, M. T. Kechadi, and B. Buckley, “Customer churn prediction in telecommunications,” Expert Systems with Applications, vol. 39, no. 1, pp. 1414–1425, 2012. View at Publisher · View at Google Scholar
  17. A. Keramati and S. M. S. Ardabili, “Churn analysis for an Iranian mobile operator,” Telecommunications Policy, vol. 35, no. 4, pp. 344–356, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Lessmann and S. Voß, “A reference model for customer-centric data mining with support vector machines,” European Journal of Operational Research, vol. 199, no. 2, pp. 520–530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 318–362, MIT Press, Cambrige, Mass, USA, 1986. View at Google Scholar
  20. P. C. Pendharkar and J. A. Rodger, “An empirical study of impact of crossover operators on the performance of non-binary genetic algorithm based neural approaches for classification,” Computers and Operations Research, vol. 31, no. 4, pp. 481–498, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Pendharkar and S. Nanda, “A misclassification cost-minimizing evolutionary-neural classification approach,” Naval Research Logistics, vol. 53, no. 5, pp. 432–447, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. P. C. Pendharkar, “A comparison of gradient ascent, gradient descent and genetic-algorithm- based artificial neural networks for the binary classification problem,” Expert Systems, vol. 24, no. 2, pp. 65–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Granger, M. A. Rubin, S. Grossberg, and P. Lavoie, “A What-and-Where fusion neural network for recognition and tracking of multiple radar emitters,” Neural Networks, vol. 14, no. 3, pp. 325–344, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Sharifie, C. Lucas, and B. N. Araabi, “Locally linear neurofuzzy modeling and prediction of geomagnetic disturbances based on solar wind conditions,” Space Weather, vol. 4, no. 6, pp. 1–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Y. Hung, D. C. Yen, and H. Y. Wang, “Applying data mining to telecom churn management,” Expert Systems with Applications, vol. 31, no. 3, pp. 515–524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Jain, M. Murty, and P. Flyn, “Data clustering: a review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999. View at Publisher · View at Google Scholar
  27. J. Dunn, “A fuzzy relative of the ISO-data process and its use in detecting compact, well-separated clusters,” Journal of Cybernetics, vol. 3, no. 3, pp. 32–57, 1973. View at Publisher · View at Google Scholar
  28. T. Kohonen, “Adaptive, associative, and self-organizing functions in neural computing,” Applied Optics, vol. 26, no. 23, pp. 4910–4918, 1987. View at Google Scholar · View at Scopus
  29. X. Zhang, J. Edwards, and J. Harding, “Personalised online sales using web usage data mining,” Computers in Industry, vol. 58, no. 8-9, pp. 772–782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann, San Francisco, Calif, USA, 2001.
  31. D. R. Cox and D. Oakes, Analysis of Survival Data, Chapman and Hall, London, UK, 1984.
  32. J. Yu and M. S. Yang, “Optimality test for generalized FCM and its application to parameter selection,” IEEE Transactions on Fuzzy Systems, vol. 13, no. 1, pp. 164–176, 2005. View at Publisher · View at Google Scholar
  33. K. L. Wu and M. S. Yang, “Alternative c-means clustering algorithms,” Pattern Recognition, vol. 35, no. 10, pp. 2267–2278, 2002. View at Publisher · View at Google Scholar
  34. N. R. Pal, K. Pal, J. M. Keller, and J. C. Bezdek, “A possibilistic fuzzy c-means clustering algorithm,” IEEE Transactions on Fuzzy Systems, vol. 13, no. 4, pp. 517–530, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. M. S. Yang, K. L. Wu, J. N. Hsieh, and J. Yu, “Alpha-cut implemented fuzzy clustering algorithms and switching regressions,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 38, no. 3, pp. 588–603, 2008. View at Publisher · View at Google Scholar · View at Scopus