Table of Contents Author Guidelines Submit a Manuscript
Journal of Engineering
Volume 2013, Article ID 937596, 7 pages
http://dx.doi.org/10.1155/2013/937596
Research Article

Coupling between Transverse Vibrations and Instability Phenomena of Plates Subjected to In-Plane Loading

1Department of Engineering, Institute of Applied Mechanics (IMA), Universidad Nacional del Sur (UNS), Alem 1253, B8000CPB Bahía Blanca, Argentina
2Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), Bahía Blanca, Argentina

Received 27 November 2012; Accepted 31 January 2013

Academic Editor: Gabriele Milani

Copyright © 2013 D. V. Bambill and C. A. Rossit. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. F. S. Hearmon, “The frequency of vibration and the elastic stability of a fixed-free strip,” British Journal of Applied Physics, vol. 7, no. 11, pp. 405–407, 1956. View at Publisher · View at Google Scholar
  2. J.-H. Kang and A. W. Leissa, “Vibration and buckling of SS-F-SS-F rectangular plates loaded by in-plane moments,” International Journal of Stability and Dynamics, vol. 1, no. 4, pp. 527–543, 2001. View at Publisher · View at Google Scholar
  3. A. W. Leissa and J.-H. Kang, “Exact solutions for vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses,” International Journal of Mechanical Sciences, vol. 44, no. 9, pp. 1925–1945, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. S. F. Bassily and S. M. Dickinson, “Buckling and lateral vibration of rectangular plates subject to in-plane loads—a Ritz approach,” Journal of Sound and Vibration, vol. 24, no. 2, pp. 219–239, 1972. View at Publisher · View at Google Scholar · View at Scopus
  5. S. M. Dickinson, “The buckling and frequency of flexural vibration of rectangular isotropic and orthotropic plates using Rayleigh's method,” Journal of Sound and Vibration, vol. 61, no. 1, pp. 1–8, 1978. View at Google Scholar · View at Scopus
  6. R. E. Kielb and L. S. Han, “Vibration and buckling of rectangular plates under in-plane hydrostatic loading,” Journal of Sound and Vibration, vol. 70, no. 4, pp. 543–555, 1980. View at Google Scholar · View at Scopus
  7. M. M. Kaldas and S. M. Dickinson, “Vibration and buckling calculations for rectangular plates subject to complicated in-plane stress distributions by using numerical integration in a Rayleigh-Ritz analysis,” Journal of Sound and Vibration, vol. 75, no. 2, pp. 151–162, 1981. View at Google Scholar · View at Scopus
  8. J.-H. Kang and A. W. Leissa, “Exact solutions for the buckling of rectangular plates having linearly varying in-plane loading on two opposite simply supported edges,” International Journal of Solids and Structures, vol. 42, no. 14, pp. 4220–4238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. D. V. Bambill, C. A. Rossit, and D. H. Felix, “Comments on ‘Buckling behavior of a graphite/epoxy composite plate under parabolic variation of axial loads’,” International Journal of Mechanical Sciences, vol. 47, no. 9, pp. 1473–1474, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. R. P. Felgar Jr., Formulas for Integrals Containing Characteristic Functions of a Vibrating Beam, Circular, no. 14, The University of Texas Publication, 1951.
  11. D. H. Felix, D. V. Bambill, and C. A. Rossit, “Desarrollo de un algoritmo de cálculo para la implementación del método de Rayleigh-Ritz en el cálculo de frecuencias naturales de vibración de placas rectangulares con complejidades diversas,” Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, vol. 20, no. 2, pp. 123–138, 2004. View at Google Scholar
  12. D. H. Felix, D. V. Bambill, and C. A. Rossit, “A note on buckling and vibration of clamped orthotopic plates under in-plane loads,” Structural Engineering and Mechanics, vol. 39, no. 1, pp. 115–123, 2011. View at Google Scholar · View at Scopus