Table of Contents Author Guidelines Submit a Manuscript
Journal of Engineering
Volume 2016 (2016), Article ID 3791417, 5 pages
http://dx.doi.org/10.1155/2016/3791417
Research Article

Experimental Investigation of Mechanical Properties of PVC Polymer under Different Heating and Cooling Conditions

Department of Production Engineering and Metallurgy, Technical College of Engineering, Sulaimani Polytechnic University, Sulaimani, Kurdistan Region, Iraq

Received 27 November 2015; Accepted 13 January 2016

Academic Editor: Sheng-Rui Jian

Copyright © 2016 Sarkawt Rostam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Mulder and M. Knot, “PVC plastic: a history of systems development and entrenchment,” Technology in Society, vol. 23, no. 2, pp. 265–286, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. Liao, J. Huang, T. Zhu, C. Xiong, and J. Fang, “A hybrid model to determine mechanical properties of soft polymers by nanoindentation,” Mechanics of Materials, vol. 42, no. 12, pp. 1043–1047, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Kurkcu, L. Andena, and A. Pavan, “An experimental investigation of the scratch behaviour of polymers: 1. Influence of rate-dependent bulk mechanical properties,” Wear, vol. 290-291, pp. 86–93, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Kurkcu, L. Andera, and A. Pavan, “An experimental investigation of the scratch behaviour of polymers: influence of hard or soft fillers,” Wear, vol. 317, pp. 277–290, 2014. View at Google Scholar
  5. M. Alzeer and K. J. D. MacKenzie, “Synthesis and mechanical properties of new fibre-reinforced composites of inorganic polymers with natural wool fibres,” Journal of Materials Science, vol. 47, no. 19, pp. 6958–6965, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Alzeer and K. MacKenzie, “Synthesis and mechanical properties of novel composites of inorganic polymers (geopolymers) with unidirectional natural flax fibres (phormium tenax),” Applied Clay Science, vol. 75-76, pp. 148–152, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, “Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties,” Progress in Polymer Science, vol. 35, no. 3, pp. 357–401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Shokuhfar and B. Arab, “The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation,” Journal of Molecular Modeling, vol. 19, no. 9, pp. 3719–3731, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Du, J. Gao, J. Yang, and X. Liu, “Dynamic rheological behavior and mechanical properties and of PVC/ASA blends,” Journal of Polymer Research, vol. 19, article 9993, 2012. View at Publisher · View at Google Scholar
  10. M. Nowicki, A. Richter, B. Wolf, and H. Kaczmarek, “Nanoscale mechanical properties of polymers irradiated by UV,” Polymer, vol. 44, no. 21, pp. 6599–6606, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Deshmukh and G. M. Joshi, “Thermo-mechanical properties of poly (vinyl chloride)/graphene oxide as high performance nanocomposites,” Polymer Testing, vol. 34, pp. 211–219, 2014. View at Publisher · View at Google Scholar
  12. H. Wang, G. Xie, Z. Ying, Y. Tong, and Y. Zeng, “Enhanced mechanical properties of multi-layer graphene filled poly(vinyl chloride) composite films,” Journal of Materials Science and Technology, vol. 31, no. 4, pp. 340–344, 2015. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Yarahmadi, I. Jakubowicz, and T. Hjertberg, “The effects of heat treatment and ageing on the mechanical properties of rigid PVC,” Polymer Degradation and Stability, vol. 82, no. 1, pp. 59–72, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. I. K. Bishay, S. L. Abd-El-Messieh, and S. H. Mansour, “Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder,” Materials & Design, vol. 32, no. 1, pp. 62–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Merah, M. Irfan-ul-Haq, and Z. Khan, “Temperature and weld-line effects on mechanical properties of CPVC,” Journal of Materials Processing Technology, vol. 142, no. 1, pp. 247–255, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Colloca, G. Dorogokupets, N. Gupta, and M. Porfiri, “Mechanical properties and failure mechanisms of closed-cell PVC foams,” International Journal of Crashworthiness, vol. 17, no. 3, pp. 327–336, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Sarfraz, M. F. Warsi, M. I. Sarwar, and M. Ishaq, “Improvement in tensile properties of PVC-montmorillonite nanocomposites through controlled uniaxial stretching,” Bulletin of Materials Science, vol. 35, no. 4, pp. 539–544, 2012. View at Publisher · View at Google Scholar · View at Scopus