Journal of Engineering

Volume 2016, Article ID 8359103, 7 pages

http://dx.doi.org/10.1155/2016/8359103

## Survival Analysis of Fatigue and Rutting Failures in Asphalt Pavements

Civil Engineering Department, National Institute of Technology, Silchar, Silchar, Assam 788010, India

Received 3 February 2016; Accepted 14 April 2016

Academic Editor: İlker Bekir Topçu

Copyright © 2016 Pabitra Rajbongshi and Sonika Thongram. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

Fatigue and rutting are two primary failure mechanisms in asphalt pavements. The evaluations of fatigue and rutting performances are significantly uncertain due to large uncertainties involved with the traffic and pavement life parameters. Therefore, deterministically it is inadequate to predict when an in-service pavement would fail. Thus, the deterministic failure time which is known as design life () of pavement becomes random in nature. Reliability analysis of such time () dependent random variable is the survival analysis of the structure. This paper presents the survival analysis of fatigue and rutting failures in asphalt pavement structures. It is observed that the survival of pavements with time can be obtained using the bathtub concept that contains a constant failure rate period and an increasing failure rate period. The survival function (), probability density function (pdf), and probability distribution function (PDF) of failure time parameter are derived using bathtub analysis. It is seen that the distribution of failure time follows three parametric Weibull distributions. This paper also works out to find the most reliable life () of pavement sections corresponding to any reliability level of survivability.

#### 1. Introduction

Fatigue and rutting are considered as primary modes of failure in asphalt pavements. In mechanistic-empirical (M-E) design of pavements, a design solution is obtained so that the estimated pavement life (fatigue and rutting lives) is not less than the total predicted traffic repetitions during its design period. Both pavement life () and traffic () parameters show significant uncertainty due to large variabilities associated with their input parameters. In order to incorporate these variabilities, a factor of safety or a reliability factor is used in the pavement design process. For a given design period () or given , the reliability () of pavement section can be varied by varying the layer(s) thicknesses or . In other words, for an in-service pavement or given , the reliability varies with time () or traffic repetitions. Reliability () as a function of time () is the survivability () of the structure. All the roads do not fail at the time equal to their respective design period. That is how the time that it actually fails becomes a random variable which deals with mortality or failure of the system with time. The randomness of the failure time () shall follow certain probability distribution.

Probabilistically, the failure time, that is, the design life (), of pavement structures is a considerable uncertain parameter. Survival () function is a property of the random variable “.” represents the possibility that the structure would not fail at time for given “.” Such stochastic failure information would help while developing probabilistic pavement management strategies and life cycle analysis [1–4]. Survival analysis is widely used in reliability engineering, where the death or failure of the system deals with time. Various researchers [3–9] studied about fatigue survival of asphalt pavements with rehabilitation and overlay perspectives. However, the survivability of an in-service pavement section would depend upon the survivability considered at the time of initial design or construction aspects. This paper focuses on the survival analysis based on fatigue and rutting design perspectives in asphalt pavements. M-E pavement design principle is considered in the present analysis.

This paper has six sections of which this is Section 1. The scope and objectives of the study are presented in Section 2. Section 3 discusses the brief analysis of hazard and survival of pavement structures based on pavement reliability. The developed survival and distribution functions of failure time have been presented in Section 4. Section 5 explains the validation and discussions of survival function. Finally, the conclusions are placed as Section 6.

#### 2. Scope and Objectives

M-E pavement design method is popularly being adopted in various guidelines [10–17]. In reliability based M-E design process and to calculate the reliability of pavement section, normally a parameter named as damage factor () is evaluated as given inwhere is number of axles repetitions (e.g., in terms of standard axles load) at the end of design period () and is fatigue or rutting life (in terms of standard axles load) of the pavement section. may represent the fatigue damage or rutting damage depending upon fatigue or rutting life. For given and , the reliability () for fatigue or rutting failure can be obtained as given in

can be estimated for any known distributions of and , and when . Details about the reliability considerations in asphalt pavements can be seen elsewhere [18–31]. Kalita and Rajbongshi [23] concluded that both and (fatigue or rutting case) follow lognormal distribution with 95% confidence level, irrespective of the distributions of various input parameters of and . Thus, the parameter also follows lognormal or follows normal distribution. Mean () and standard deviation () of can be determined as given in the following equations, respectively:where is mean of the random variable ; is standard deviation of the random variable ; and is coefficient of variation (COV) of random variable . It may be mentioned that the deterministic values of lognormal and (fatigue or rutting case) represent the median of their respective distributions, which divides the total probability into two equal halves [32]. Therefore, the deterministic value of also represents the median of random parameter , or value represents the mean of normal parameter (refer to (3)). The may vary in the range of 31.6%–73.1% in case of fatigue and 39.5%–94.2% in case of rutting [23].

From design perspective for any given , the pavement reliability () as a function of design layer(s) thicknesses () can be expressed as given inwhere indicates normal probability corresponding to the standard normal deviate and . It may be mentioned that is constant for given and given (refer to (4)). In other words, for given of an in-service pavement the number of traffic repetitions () varies with time and thus, also varies with time. In this case, as a function of time () can be expressed as given in

Equation (6) indicates the survival of the pavement structure either for fatigue or for rutting failure. It describes the ability of the structure to function under stated conditions for the pr-specified time of failure (). The fact remains that, due to uncertain prediction in damage () parameter, a pavement may fail early or later than that of . That is, the failure time () is a random parameter and is expected to follow certain probability distribution. One may be interested to know the failure probability of the in-service pavement section at any given time (), specifically for life cycle management and rehabilitation purposes [1–7, 9]. Thus, it needs the survival analysis of pavement structures based on the design perspectives. To this effect, it is necessary to establish the survival () function and probability distribution () of random variable “.” This forms the scope of the present study. The objectives of the present work are (a) to analyze reliability variations with time for different design life and different variabilities of the damage parameter (fatigue or rutting) and (b) to derive survival function and probability distribution function of failure time () for fatigue and rutting failures.

#### 3. Survival and Hazard Analysis of Pavements

Reliability closely relates to safety or risks of failure in any uncertain system or system component. In pavement system, fatigue and rutting are two primary failure components that associated with large uncertainty. The time when it would fail cannot not be ascertained deterministically and that is how the deterministic failure time, that is, the design life () parameter, becomes a random variable. Considering “” as a random variable, the fatigue or rutting failure probability, that is, , can be obtained as given in (6). The function represents the survival () of fatigue or rutting in pavement sections and therefore, at this juncture the function may be expressed as given in

The failure rate or hazards () function may be expressed as given in [33, 34]

The expression of in (7) has no closed form solution and therefore, an attempt has been made to derive through numerical solution. To find the time dependent variations in or (refer to (7)), the traffic () variation is expressed as given inwhere is annual average daily traffic at the time of opening pavement to the traffic in terms of a common axles load (e.g., standard axles); is traffic repetitions (in standard axles) at the base year; and is annual traffic growth rate. Under mixed traffic conditions, the different axle loads may be converted into standard axles using load different equivalency factors [10, 14, 17, 35]. It may be mentioned that in (9) is in years and is equal to the life of pavement (). A generic form of M-E fatigue and rutting equations may be expressed as given in [11, 14, 35]where is initial critical horizontal tensile strain at the bottom of asphalt layer; is initial critical vertical compressive strain at the top of subgrade layer; is the initial stiffness of asphalt material; and , , , , and are regression constants. and can be obtained using any pavement analysis program. The following data are used in the present.

Let, for an asphalt pavement, the base year traffic () be 0.231 million standard axles (msa). The design life () is 26 years and the traffic growth rate is 7.5% per annum. COV of the damage () parameter may be taken as 50% [23]. That is, from (4) can be obtained as 0.472. Using (9), the design traffic repetitions (), that is, the pavement life (), are obtained as 17.11 msa. Thus, from (7) and (8), the numerical values of (or ) and can be determined for different time “.” This is shown in Figure 1.