Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2010, Article ID 840895, 9 pages
http://dx.doi.org/10.1155/2010/840895
Research Article

Channel Characterization for 700 MHz DSRC Vehicular Communication

1Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
2Toyota Technical Center, Ann Arbor, MI 48105, USA

Received 19 March 2010; Accepted 5 July 2010

Academic Editor: C. C. Jay Kuo

Copyright © 2010 Raffi Sevlian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Varaiya, “Smart cars on smart roads. Problems of control,” IEEE Transactions on Automatic Control, vol. 38, no. 2, pp. 195–207, 1993. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  2. D. Jiang, V. Taliwal, A. Meier, W. Holfelder, and R. Herrtwich, “Design of 5.9 GHz DSRC-based vehicular safety communication,” IEEE Wireless Communications, vol. 13, no. 5, pp. 36–43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. “Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems–5 GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” ASTM Std. E2213-03, 2003, http://www.astm.org/.
  4. H. Schulze and C. Luders, Theory and Applications of OFDM and CDMA: Wideband Wireless Communications, Wiley, New York, NY, USA, 1st edition, 2005.
  5. G. Acosta and M. A. Ingram, “Model development for the wideband expressway vehicle-to-vehicle 2.4 GHz channel,” in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC '06), pp. 1283–1288, April 2006. View at Scopus
  6. G. Acosta and M. A. Ingram, “Doubly selective vehicle-to-vehicle channel measurements and modeling at 5.9 GHz,” in Proceedings of the Wireless Personal Multimedia Communications Conference (WPMCC ’06), September 2006.
  7. X. Zhao, J. Kivinen, P. Vainikainen, and K. Skog, “Propagation characteristics for wideband outdoor mobile communications at 5.3 Ghz,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 3, pp. 507–514, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Zhao, J. Kivinen, P. Vainikainen, and K. Skog, “Characterization of doppler spectra for mobile communications at 5.3 GHz,” IEEE Transactions on Vehicular Technology, vol. 52, no. 1, pp. 14–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Cheng, B. E. Henty, D. D. Stancil, F. Bai, and P. Mudalige, “Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz Dedicated Short Range Communication (DSRC) frequency band,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 8, pp. 1501–1516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Lin, E. H. Benjamin, D. S. Daniel, and B. Fan, “Doppler component analysis of the suburban vehicle-to-vehicle DSRC propagation channel at 5.9 GHz,” in Proceedings of IEEE Radio and Wireless Symposium (RWS '08), pp. 343–346, January 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Tan, W. Tang, K. Laberteaux, and A. Bahai, “Measurement and analysis of wireless channel impairments in DSRC vehicular communications,” in Proceedings of IEEE International Conference on Communications (ICC '08), pp. 4882–4888, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. D. C. Cox, “Delay Doppler characteristics of multipath propagation at 910 MHz in a suburban mobile radio environment,” IEEE Transactions on Antennas and Propagation, vol. 20, no. 5, pp. 625–635, 1972. View at Google Scholar · View at Scopus
  13. J. S. Davis and J. Linnartz, “Vehicle to vehicle RF propagation measurements,” in Proceedings of the 28th Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 470–474, October 1994.
  14. D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, New York, NY, USA, 1st edition, 2005.
  15. T. Rappaport, Wireless Communications: Principles and Practice, Prentice Hall, Englewood Cliffs, NJ, USA, 2nd edition, 2002.
  16. A. S. Akki and F. Haber, “A statistical model of mobile-to-mobile land communication channel,” IEEE Transactions on Vehicular Technology, vol. 35, no. 1, pp. 2–7, 1986. View at Google Scholar · View at Scopus
  17. A. Doufexi, S. Armour, M. Butler, A. Nix, D. Bull, J. McGeehan, and P. Karlsson, “A comparison of the HIPERLAN/2 and IEEE 802.11a wireless LAN standards,” IEEE Communications Magazine, vol. 40, no. 5, pp. 172–180, 2002. View at Publisher · View at Google Scholar · View at Scopus