Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2012, Article ID 479696, 19 pages
http://dx.doi.org/10.1155/2012/479696
Research Article

Effectiveness of Partition and Graph Theoretic Clustering Algorithms for Multiple Source Partial Discharge Pattern Classification Using Probabilistic Neural Network and Its Adaptive Version: A Critique Based on Experimental Studies

1Department of Electrical and Electronics Engineering, School of Electrical and Electronics Engineering, SASTRA University, Tirumalaisamudram, Tamil Nadu, Thanjavur 613 401, India
2W.S. Test Systems Limited, 27th km Bellary Road, Doddajalla Post, Karnataka, Bangalore 562 157, India
3School of Humanities and Sciences, SASTRA University, Tirumalaisamudram, Tamil Nadu, Thanjavur 613 401, India

Received 29 December 2011; Accepted 22 June 2012

Academic Editor: Raj Senani

Copyright © 2012 S. Venkatesh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. C. Sahoo, M. M. A. Salama, and R. Bartnikas, “Trends in partial discharge pattern classification: a survey,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 12, no. 2, pp. 248–264, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Bartnikas, “Partial discharges their—mechanism, detection and measurement,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 9, no. 5, pp. 763–808, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Senthil Kumar, M. N. Narayanachar, and R. S. Nema, “Pulse sequence studies on PD data,” in Proceedings of the 11th International Symposium on High Voltage Engineering, pp. 5.25.S1–5.25.S.7, UK, 1999.
  4. E. Gulski and A. Krivda, “Neural networks as a tool for recognition of partial discharges,” IEEE transactions on electrical insulation, vol. 28, no. 6, pp. 984–1001, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. A. A. Mazroua, R. Bartnikas, and M. M. A. Salama, “Discrimination between PD pulse shapes using different neural network paradigms,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 1, no. 6, pp. 1119–1130, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Satish and W. S. Zaengl, “Artificial neural networks for recognition of 3-D partial discharge patterns,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 1, no. 2, pp. 265–275, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. M. M. A. Salama and R. Bartnikas, “Determination of neural-network topology for partial discharge pulse pattern recognition,” IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 446–456, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Karthikeyan and S. Gopal, “A novel complex probabilistic neural network system for classification of partial discharge patterns,” in Proceedings of the 14th International Symposium on High Voltage Engineering, pp. 25–29, Beijing, China, August 2005.
  9. B. Karthikeyan, S. Gopal, and S. Venkatesh, “Probabilistic neural network and its adaptive version—a stochastic approach to pd pattern classification task,” International Journal of Information Acquisition, vol. 2, no. 4, pp. 1–12, 2005. View at Google Scholar
  10. B. Karthikeyan, S. Gopal, and S. Venkatesh, “A heuristic complex probabilistic neural network system for partial discharge pattern classification,” Journal of the Indian Institute of Science, vol. 85, no. 5, pp. 279–294, 2005. View at Google Scholar · View at Scopus
  11. B. Karthikeyan, S. Gopal, and S. Venkatesh, “Partial discharge pattern classification using composite versions of probabilistic neural network inference engine,” Expert Systems with Applications, vol. 34, no. 3, pp. 1938–1947, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. T. K. Abdel-Galil, R. M. Sharkawy, M. M. A. Salama, and R. Bartnikas, “Partial discharge pattern classification using the fuzzy decision tree approach,” IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 6, pp. 2258–2263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Contin, A. Cavallini, G. C. Montanari, G. Pasini, and F. Puletti, “Digital detection and fuzzy classification of partial discharge signals,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 9, no. 3, pp. 335–348, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Satish and W. S. Zaengl, “Can fractal features be used for recognizing 3-D partial discharge patterns?” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 2, no. 3, pp. 352–359, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. E. M. Lalitha and L. Satish, “Fractal image compression for classification of PD sources,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 5, no. 4, pp. 550–557, 1998. View at Google Scholar · View at Scopus
  16. T. K. Abdel-Galil, Y. G. Hegazy, M. M. A. Salama, and R. Bartnikas, “Partial discharge pulse pattern recognition using hidden Markov models,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 4, pp. 715–723, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Satish and B. I. Gururaj, “Use of hidden Markov models for partial discharge pattern classification,” IEEE transactions on electrical insulation, vol. 28, no. 2, pp. 172–182, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Venkatesh, S. Gopal, and K. Kannan, “A novel hybrid continuous density hidden markov model—probabilistic neural network for multiple source partial discharge pattern recognition,” in Proceedings of the 17th International Symposium on High Voltage Engineering (ISH'11), p. 402, F-039, Hannover, Germany, August 2011.
  19. E. M. Lalitha and L. Satish, “Wavelet analysis for classification of multi-source PD patterns,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 7, no. 1, pp. 40–47, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Ma, C. Zhou, and I. J. Kemp, “Interpretation of wavelet analysis and its application in partial discharge detection,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 9, no. 3, pp. 446–457, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. J. H. Lee, T. Okamoto, and C. W. Yi, “Classification of PD patterns from multiple defects,” in Proceeding of the 6th International Conference on Properties and Applications of Dielectric Materials, pp. 463–465, June 2000. View at Scopus
  22. R. J. Van Brunt, “Stochastic properties of partial discharge phenomenon,” IEEE Transactions on Electrical Insulation, vol. 26, no. 5, pp. 902–948, 1991. View at Publisher · View at Google Scholar
  23. R. J. Van Brunt and E. W. Cernyar, “Importance of unraveling memory propagation effects in interpreting data on partial discharge statistics,” IEEE Transactions on Electrical Insulation, vol. 28, no. 6, pp. 905–916, 1993. View at Publisher · View at Google Scholar · View at Scopus
  24. M. G. Danikas and A. D. Karlis, “On the use of neural networks in recognizing sources of partial discharge in electrical machine insulation: a short review,” International Review of Electrical Engineering, vol. 1, no. 2, pp. 277–285, 2006. View at Google Scholar
  25. E. Gulski, “Digital analysis of partial discharges,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 2, no. 5, pp. 822–837, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Krivda, “Automated recognition of partial discharges,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 2, no. 5, pp. 796–821, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. R. E. James and B. T. Phung, “Development of computer-based measurements and their application to PD pattern analysis,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 2, no. 5, pp. 838–856, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Candela, G. Mirelli, and R. Schifani, “PD recognition by means of statistical and fractal parameters and a neural network,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 7, no. 1, pp. 87–94, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. A. A. Mazroua, M. M. A. Salama, and R. Bartnikas, “PD Pattern recognition with neural networks using the multilayer perceptron technique,” IEEE Transactions on Electrical Insulation, vol. 28, no. 6, pp. 1082–1089, 1993. View at Publisher · View at Google Scholar · View at Scopus
  30. N. B. Bish, P. A. Howson, R. J. Howlett, T. J. Fawcett, and D. A. Hilder, “Combined intelligent PD analysis of high voltage dielectric condition evaluation,” in Proceedings of 11th International Symposium on High Voltage Engineering (ISH'99), London, UK, 1999.
  31. M. Hoof, B. Freisleben, and R. Patsch, “PD source identification with novel discharge parameters using counterpropagation neural networks,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 4, no. 1, pp. 17–32, 1997. View at Google Scholar · View at Scopus
  32. B. Karthikeyan, S. Gopal, and S. Venkatesh, “ART 2-an unsupervised neural network for PD pattern recognition and classification,” Expert Systems with Applications, vol. 31, no. 2, pp. 345–350, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Karthikeyan, S. Gopal, S. Venkatesh, and S. Saravanan, “PNN and its adaptive version—an ingenious approach to PD pattern classification compared with BPA network,” Journal of Electrical Engineering, vol. 57, no. 3, pp. 138–145, 2006. View at Google Scholar · View at Scopus
  34. S. Venkatesh, S. Gopal, P. S. S. Srinivasan, and B. Karthikeyan, “Identification of multiple source partial discharge patterns using bayesian classifier based neural networks—a comparison of supervised and unsupervised learning techniques,” in Proceedings of 15th International Symposium of High Voltage Engineering, Slovenia (ISH'07), no. T5-407, p. 198, 2007.
  35. D. F. Specht, “Probabilistic neural networks for classification, mapping or associative memory,” in Proceedings of the IEEE International Conference on Neural Networks, vol. 1, no. 1, pp. 525–532, 1998.
  36. D. F. Specht, “Probabilistic neural networks and the polynomial Adaline as complementary techniques for classification,” IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 111–121, 1990. View at Publisher · View at Google Scholar · View at Scopus
  37. C. H. Chen, Fuzzy Logic & Neural Network Handbook, McGraw-Hill, New York,. NY, USA, 1st edition, 1996.
  38. T. Masters, Advanced Algorithms for Neural Networks: A C++ Sourcebook, John Wiley & Sons, New York, NY, USA, 1995.
  39. S. Venkatesh and S. Gopal, “Robust heteroscedastic probabilistic neural network for multiple source partial discharge pattern recognition—significance of outliers on classification capability,” Expert Systems with Applications, vol. 38, no. 9, pp. 11501–11514, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Venkatesh and S. Gopal, “Orthogonal least square center selection technique—a robust scheme for multiple source Partial Discharge pattern recognition using Radial Basis Probabilistic Neural Network,” Expert Systems with Applications, vol. 38, no. 7, pp. 8978–8989, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. D. F. Specht and H. Romsdahl, “Experience with adaptive probabilistic neural networks and adaptive general regression neural networks,” in Proceedings of the IEEE International Conference on Neural Networks, pp. 1203–1208, June 1994. View at Scopus
  42. N. K. Bose and P. Liang, Neural Network Fundamentals With Graphs, Algorithms and Applications, McGraw-Hill, Hightstown, NJ, USA, 1996.
  43. V. Faber, “Clustering and the continuous K-means algorithm,” Journal of Los Alamos Science, vol. 22, pp. 38–144, 1994. View at Google Scholar
  44. R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on Neural Networks, vol. 16, no. 3, pp. 645–678, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. Z. Tian, T. Hwang, and R. Kuang, “A hypergraph-based learning algorithm for classifying gene expression and arrayCGH data with prior knowledge,” Bioinformatics, vol. 25, no. 21, pp. 2831–2838, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Fausett, Fundamentals of Neural Networks—Architectures, Algorithms and Applications, Pearson Education, 2004.
  47. P. Burrascano, “Learning vector quantization for the probabilistic neural network,” IEEE Transactions on Neural Networks, vol. 2, no. 4, pp. 458–461, 1991. View at Publisher · View at Google Scholar · View at Scopus
  48. H. S. Cho, “Opto-mechatronic handbook: techniques and applications,” in Pattern Recognition, chapter 9, CRC Press, Fla, USA, 2003. View at Google Scholar
  49. A. Bretto, “Introduction to hypergraph theory and its use in engineering and image processing,” in Advances in Imaging and Electron Physics, vol. 131, Chapter 1, Elsevier Academic Press, 2004. View at Google Scholar
  50. D. Zhou, J. Huang, and B. Scholkopf, “Learning with hypergraphs: clustering, classification and embedding,” in Proceedings of the Advances in Neural Information Processing Systems (NIPS'06), pp. 1601–1608, MIT Press, Cambridge, Mass, USA, 2006.
  51. J. S. Cherng and M. J. Lo, “A hypergraph based clustering algorithm for spatial data sets,” in Proceedings of the 1st IEEE International Conference on Data Mining (ICDM'01), pp. 83–90, San Jose, Calif, USA, December 2001. View at Scopus
  52. IEC, 60270, High Voltage Test Techniques-Partial Discharge Measurements, 2000.
  53. CIGRE Working Group, “Recognition of discharges,” Report 21.03 Electra No. 11, 1969. View at Google Scholar
  54. T ASTM, D, 61847, Tentative methods of conditioning plastics and electrical insulating materials for testing, 2003.
  55. W.-S. Lim and M. V. V. Rao, “A new method of reducing network complexity in probabilistic neural network for target identification,” IEICE Electronics Express, vol. 1, no. 17, pp. 534–539, 2004. View at Publisher · View at Google Scholar
  56. R. A. Fischer, “The use of multiple measurements in taxonomic problems,” Annual Eugenics, vol. 7, Part II, pp. 179–188, 1936. View at Google Scholar
  57. Ke Lin Du, M. N. S. Swamy, and K. L. Du, NeurAl Networks in a Soft Computing Framework, chapter 6, Springer, London, 1st edition, 2006.
  58. D. F. Specht and P. D. Shapiro, “Generalization accuracy of probabilistic neural networks compared with back-propagation networks,” in Proceedings of IEEE International Conference on Neural Networks, pp. 887–892, Seattle, Wash, USA, July 1991. View at Scopus