Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2012, Article ID 609650, 8 pages
Research Article

Reduced Complexity Iterative Decoding of 3D-Product Block Codes Based on Genetic Algorithms

1Department of Industrial and Production Engineering, Moulay Ismail University, Ecole Nationale Supérieure d'Arts et Métiers, Meknès 50000, Morocco
2Department of Communication Networks, Ecole Nationale Supérieure d'Informatique et d'Analyse des Systèmes, Rabat 10000, Morocco

Received 15 September 2011; Revised 21 December 2011; Accepted 8 February 2012

Academic Editor: Lisimachos Kondi

Copyright © 2012 Abdeslam Ahmadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Transactions on Communications, vol. 44, no. 9, pp. 1261–1271, 1996. View at Google Scholar · View at Scopus
  2. D. J. C. Mackay and R. M. Neal, “Good codes based on very sparse matrices,” in Proceedings of the 5th IMA Conference on Cryptography and Coding, Springer, Berlin, Germany, 1995.
  3. P. Elias, “Error-free coding,” IRE Transactions on Information Theory, vol. PGIT-4, pp. 29–37, 1954. View at Google Scholar
  4. R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions on Information Theory, vol. IT-27, no. 5, pp. 533–547, 1981. View at Google Scholar
  5. S. Lin and D. Costello, Error Control Coding: Fundamentals and Applications, Prentice-Hall, 1983.
  6. R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, “Near optimum decoding of product codes,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM ’94), vol. 1–3, pp. 339–343, San Francisco, Calif, USA, 1994.
  7. D. Chase, “A class of algorithms for decoding block codes with channel measurement information,” IEEE Transactions on Information Theory, vol. 18, pp. 170–181, 1972. View at Google Scholar
  8. P. A. Martin, D. P. Taylor, and M. P. C. Fossorier, “Soft-input soft-output list-based decoding algorithm,” IEEE Transactions on Communications, vol. 52, no. 2, pp. 252–262, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. S. Han, C. R. P. Hartmann, and C.-C. Chen, “Efficient maximumlikelihood soft-decision decoding of linear block codes using algorithm A*,” Tech. Rep. SU-CIS-91-42, School of Computer and Information Science, Syracuse University, Syracuse, NY, USA, 1991. View at Google Scholar
  10. H. S. Maini, K. G. Mehrotra, C. Mohan, and S. Ranka, “Genetic algorithms for soft decision decoding of linear block codes,” Journal of Evolutionary Computation, vol. 2, no. 2, pp. 145–164, 1994. View at Google Scholar
  11. J. L. Wu, Y. H. Tseng, and Y. M. Huang, “Neural networks decoders for linear block codes,” International Journal of Computational Engineering Science, vol. 3, no. 3, pp. 235–255, 2002. View at Google Scholar
  12. F. El Bouanani, H. Berbia, M. Belkasmi, and H. Ben-azza, “Comparaison des décodeurs de Chase, l’OSD et ceux basés sur les algorithmes génétiques,” in Proceedings of the GRETSI, Troyes, France, 2007.
  13. M. Belkasmi, H. Berbia, and F. El Bouanani, “Iterative decoding of product block codes based on the genetic algorithms,” in Proceedings of the 7th International ITG Conference on Source and Channel Coding (SCC'08), 2008.
  14. F. J. Macwilliams and N. J. A. Sloane, The Theory Error Correcting Codes, vol. North-Holland, Amsterdam, The Netherlands edition, 1978.