Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2012 (2012), Article ID 716720, 15 pages
http://dx.doi.org/10.1155/2012/716720
Research Article

Information-Theoretic Analysis of Underwater Acoustic OFDM Systems in Highly Dispersive Channels

1ENSTA Bretagne, UMR CNRS 6285 Lab-STICC, Université Européenne de Bretagne, 2 rue Francois Verny, 29806 Brest Cedex 9, France
2Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
3Institut Mines-Télécom, Telecom Bretagne, UMR CNRS 6285 Lab-STICC, Université Européenne de Bretagne, Technopôle Brest Iroise-CS 83818, 29238 Brest Cedex, France
4General Sonar Studies Group, Thales Underwater Systems, 525 route des Dolines, 06903 Sophia Antipolis Cedex, France

Received 10 February 2012; Accepted 24 April 2012

Academic Editor: Konstantinos Pelekanakis

Copyright © 2012 Francois-Xavier Socheleau et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. van Walree, “Channel sounding for acoustic communications: techniques and shallow-water examples,” Research Report, Norwegian Defence Research Establishment (FFI), Kjeller, Norway, 2011. View at Google Scholar
  2. F.-X. Socheleau, C. Laot, and J.-M. Passerieux, “Stochastic replay of non-WSSUS underwater acoustic communication channels recorded at sea,” IEEE Transactions on Signal Processing, vol. 59, no. 10, pp. 4838–4849, 2011. View at Publisher · View at Google Scholar
  3. M. Stojanovic and J. Preisig, “Underwater acoustic communication channels: propagation models and statistical characterization,” IEEE Communications Magazine, vol. 47, no. 1, pp. 84–89, 2009. View at Google Scholar
  4. B. Tomasi, J. Preisig, G. B. Deane, and M. Zorzi, “A study on the wide-sense stationarity of the underwater acoustic channel for non-coherent communication systems,” in Proceedings of the 11th European Wireless Conference, Sustainable Wireless Technologies (European Wireless), pp. 1–6, April 2011.
  5. D. B. Kilfoyle and A. B. Baggeroer, “State of the art in underwater acoustic telemetry,” IEEE Journal of Oceanic Engineering, vol. 25, no. 1, pp. 4–27, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Frassati, C. Lafon, P. A. Laurent, and J. M. Passerieux, “Experimental assessment of OFDM and DSSS modulations for use in littoral waters underwater acoustic communications,” in Proceedings of IEEE Oceans'05 Europe Conference & Exhibition, pp. 826–831, Brest, France, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Li, S. Zhou, M. Stojanovic, L. L. Freitag, and P. Willett, “Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts,” IEEE Journal of Oceanic Engineering, vol. 33, no. 2, pp. 198–209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. C. R. Berger, S. Zhou, J. C. Preisig, and P. Willett, “Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing,” IEEE Transactions on Signal Processing, vol. 58, no. 3, pp. 1708–1721, 2010. View at Publisher · View at Google Scholar
  9. G. Leus and P. A. Van Walree, “Multiband OFDM for covert acoustic communications,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 9, Article ID 4686805, pp. 1662–1673, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Jung and G. Wunder, “The WSSUS pulse design problem in multicarrier transmission,” IEEE Transactions on Communications, vol. 55, no. 10, pp. 1918–1928, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Matz, D. Schafhuber, K. Gröchenig, M. Hartmann, and F. Hlawatsch, “Analysis, optimization, and implementation of low-interference wireless multicarrier systems,” IEEE Transactions on Wireless Communications, vol. 6, no. 5, pp. 1921–1930, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Barbieri, G. Caire, and U. Mitra, “Transmit/receive filter optimization for doubly-selective underwater acoustic channels,” in Proceedings of the IEEE OCEANS' 2008, pp. 1–6, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Kozek and A. F. Molisch, “Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1579–1589, 1998. View at Google Scholar · View at Scopus
  14. R. Haas and J. C. Belfiore, “A Time-Frequency Well-localized Pulse for Multiple Carrier Transmission,” Wireless Personal Communications, vol. 5, no. 1, pp. 1–18, 1997. View at Google Scholar · View at Scopus
  15. K. Liu, T. Kadous, and A. M. Sayeed, “Orthogonal time-frequency signaling over doubly dispersive channels,” IEEE Transactions on Information Theory, vol. 50, no. 11, pp. 2583–2603, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. P. A. Bello, “Characterization of randomly time-variant linear channels,” IEEE Transactions on Communications Systems, vol. 11, no. 4, pp. 360–393, 1963. View at Google Scholar
  17. C. Polprasert, J. A. Ritcey, and M. Stojanovic, “Capacity of OFDM systems over fading underwater acoustic channels,” IEEE Journal of Oceanic Engineering, vol. 36, no. 4, pp. 514–524, 2011. View at Publisher · View at Google Scholar
  18. M. C. Gursoy, H. V. Poor, and S. Verdú, “The noncoherent Rician fading channel part I: structure of the capacity-achieving input,” IEEE Transactions on Wireless Communications, vol. 4, no. 5, pp. 2193–2206, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Sethuraman, L. Wang, B. Hajek, and A. Lapidoth, “Low-SNR capacity of noncoherent fading channels,” IEEE Transactions on Information Theory, vol. 55, no. 4, pp. 1555–1574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Durisi, U. G. Schuster, H. Bölcskei, and S. Shamai, “Noncoherent capacity of underspread fading channels,” IEEE Transactions on Information Theory, vol. 56, no. 1, Article ID 5361496, pp. 367–395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Durisi, V. I. Morgenshtern, and H. Bolcskei, “Sensitivity of continuous-time noncoherent fading channel capacity,” IEEE Transactions on Information Theory. In press.
  22. P. Qarabaqi and M. Stojanovic, “Statistical modeling of a shallow water acoustic communication channel,” in Proceedings of the Underwater Acoustic Measurements: Technologies and Results Conference, p. 13411350, Nafplion, Greece, June 2009.
  23. F. D. Neeser and J. L. Massey, “Proper complex random processes with applications to information theory,” IEEE Transactions on Information Theory, vol. 39, no. 4, pp. 1293–1303, 1993. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Stojanovic, “On the relationship between capacity and distance in an underwater acoustic communication channel,” ACM SIGMOBILE Mobile Computing and Communications Review (MC2R), vol. 11, no. 4, pp. 43–64, 2007. View at Google Scholar
  25. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhuser, Boston, Mass, USA, 2003.
  26. F. Hlawatsch and G. Matz, Wireless Communications Over Rapidly Time-Varying Channels, Elsevier, New York, NY, USA, 2011.
  27. S.-J. Hwang and P. Schniter, “Efficient multicarrier communication for highly spread underwater acoustic channels,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 9, Article ID 4686806, pp. 1674–1683, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Schafhuber, H. Bölcskei, and G. Matz, “System capacity of wideband OFDM communications over fading channels without channel knowledge,” in Proceedings of the IEEE International Symposium on Information Theory (ISIT '04), July 2004. View at Scopus
  29. X. Deng and A. M. Haimovich, “Achievable rates over time-varying rayleigh fading channels,” IEEE Transactions on Communications, vol. 55, no. 7, pp. 1397–1406, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Kozek, Matched weyl-heisenberg expansions of nonstationary environments [Ph.D. thesis], Department of Electrical Engineering, Vienna University of Technology, Vienna, Austria, 1997.
  31. J.-M. Passerieux, F.-X. Socheleau, and C. Laot, “On the capacity of the underwater acoustic communication channel under realistic assumptions,” in Proceedings of the IEEE European Wireless, pp. 1–6, April 2011.
  32. G. Campbell and R. Foster, Fourier Integrals for Practical Applications, D Van Nostrand Company Inc, New York, NY, USA, 1948.
  33. V. Sethuraman and B. Hajek, “Capacity per unit energy of fading channels with a peak constraint,” IEEE Transactions on Information Theory, vol. 51, no. 9, pp. 3102–3120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Gazzah, P. A. Regalia, and J. P. Delmas, “Asymptotic eigenvalue distribution of block toeplitz matrices and application to blind SIMO channel identification,” IEEE Transactions on Information Theory, vol. 47, no. 3, pp. 1243–1251, 2001. View at Publisher · View at Google Scholar · View at Scopus