Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2012, Article ID 730537, 16 pages
Research Article

Advanced Receiver Design for Mitigating Multiple RF Impairments in OFDM Systems: Algorithms and RF Measurements

Department of Communications Engineering, Tampere University of Technology, 33101 Tampere, Finland

Received 15 July 2011; Accepted 12 October 2011

Academic Editor: Ming-Der Shieh

Copyright © 2012 Adnan Kiayani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Direct-conversion architecture-based orthogonal frequency division multiplexing (OFDM) systems are troubled by impairments such as in-phase and quadrature-phase (I/Q) imbalance and carrier frequency offset (CFO). These impairments are unavoidable in any practical implementation and severely degrade the obtainable link performance. In this contribution, we study the joint impact of frequency-selective I/Q imbalance at both transmitter and receiver together with channel distortions and CFO error. Two estimation and compensation structures based on different pilot patterns are proposed for coping with such impairments. The first structure is based on preamble pilot pattern while the second one assumes a sparse pilot pattern. The proposed estimation/compensation structures are able to separate the individual impairments, which are then compensated in the reverse order of their appearance at the receiver. We present time-domain estimation and compensation algorithms for receiver I/Q imbalance and CFO and propose low-complexity algorithms for the compensation of channel distortions and transmitter IQ imbalance. The performance of the compensation algorithms is investigated with computer simulations as well as with practical radio frequency (RF) measurements. The performance results indicate that the proposed techniques provide close to the ideal performance both in simulations and measurements.