Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2012, Article ID 840513, 16 pages
http://dx.doi.org/10.1155/2012/840513
Research Article

Robustness Maximization of Parallel Multichannel Systems

1National Center for Scientific Research (CNRS), The Institute of Electronics and Telecommunications of Rennes (IETR), UMR 6164, 35708 Rennes, France
2Université Européenne de Bretagne, INSA, IETR, UMR 6164, 35708 Rennes, France

Received 27 February 2012; Accepted 10 May 2012

Academic Editor: Shuo Guo

Copyright © 2012 Jean-Yves Baudais et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. N. Akansu, P. Duhamel, X. Lin, and M. De Courville, “Orthogonal transmultiplexers in communication: a review,” IEEE Transactions on Signal Processing, vol. 46, no. 4, pp. 979–995, 1998. View at Google Scholar · View at Scopus
  2. J. M. Cioffi, “A multicarrier primer,” Tech. Rep. ANSI T1E1.4/91–157, Committee Contribution, Washington, DC, USA, 1991. View at Google Scholar
  3. G. D. Forney and M. V. Eyuboglu, “Combined equalization and coding using precoding,” IEEE Communications Magazine, vol. 29, no. 12, pp. 25–34, 1991. View at Publisher · View at Google Scholar · View at Scopus
  4. C. E. Shannon, “Communication in the presence of noise,” Proceedings of the Institute of Radio Ingineers, vol. 37, pp. 10–21, 1949. View at Google Scholar
  5. A. Lozano, A. M. Tulino, and S. Verdú, “Optimum power allocation for parallel gaussian channels with arbitrary input distributions,” IEEE Transactions on Information Theory, vol. 52, no. 7, pp. 3033–3051, 2006. View at Publisher · View at Google Scholar
  6. T. Antonakopoulos and N. Papandreou, “Bit and power allocation in constrained multicarrier systems: the single-user case,” Eurasip Journal on Advances in Signal Processing, vol. 2008, Article ID 643081, 14 pages, 2008. View at Publisher · View at Google Scholar
  7. S. T. Chung and A. J. Goldsmith, “Degrees of freedom in adaptive modulation: a unified view,” IEEE Transactions on Communications, vol. 49, no. 9, pp. 1561–1571, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Fasano and G. di Blasio, “The duality between margin maximization and rate maximization discrete loading problems,” in Proceedings of the IEEE Workshop on Signal Processing Advances in Wireless Communications, pp. 621–625, July 2004.
  9. D. P. Palomar and J. R. Fonollosa, “Practical algorithms for a family of waterfilling Solutions,” IEEE Transactions on Signal Processing, vol. 53, no. 2, pp. 686–695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Kim, I. S. Park, and Y. H. Lee, “Use of linear programming for dynamic subcarrier and bit allocation in multiuser OFDM,” IEEE Transactions on Vehicular Technology, vol. 55, no. 4, pp. 1195–1207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Hughes-Hartogs, Ensemble Modem Structure for Imperfect Transmission Media, Telebit Corporation, Cupertino, Calif, USA, 1987, US Patent 4,679,227.
  12. B. S. Krongold, K. Ramchandran, and D. L. Jones, “Computationally efficient optimal power allocation algorithms for multicarrier communication systems,” IEEE Transactions on Communications, vol. 48, no. 1, pp. 23–27, 2000. View at Publisher · View at Google Scholar
  13. W. J. Choi, K. W. Cheong, and J. M. Cioffi, “Adaptive modulation with limited peak power for fading channels,” in Proceedings of the 51st Vehicular Technology Conference 'Shaping History Through Mobile Technologies' (VTC '00), pp. 2568–2572, May 2000. View at Scopus
  14. P. Uthansakul and M. E. Bialkowski, “Performance comparisons between greedy and Lagrange algorithms in adaptive MIMO MC-CDMA systems,” in Proceedings of the Asia-Pacific Conference on Communications, pp. 163–167, Perth, Australia, October 2005.
  15. A. J. Goldsmith, “Variable-rate variable-power MQAM for fading channels,” IEEE Transactions on Communications, vol. 45, no. 10, pp. 1218–1230, 1997. View at Google Scholar · View at Scopus
  16. S. Ye, R. S. Blum, and L. J. Cimini Jr, “Adaptive OFDM systems with imperfect channel state information,” IEEE Transactions on Wireless Communications, vol. 5, no. 11, pp. 3255–3265, 2006. View at Publisher · View at Google Scholar
  17. N. Y. Ermolova and B. Makarevitch, “Practical approaches to adaptive resource allocation in OFDM systems,” Eurasip Journal on Wireless Communications and Networking, vol. 2008, Article ID 160307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Baccarelli, A. Fasano, and M. Biagi, “Novel efficient bit-loading algorithms for peak-energy-limited ADSLtype multicarrier systems,” IEEE Transactions on Signal Processing, vol. 50, no. 5, pp. 1237–1247, 2002. View at Google Scholar
  19. A. Fasano, “On the optimal discrete bit loading for multicarrier systems with constraints,” in Proceedings of the 57th IEEE Semiannual Vehicular Technology Conference (VTC '03), vol. 2, pp. 915–919, April 2003. View at Scopus
  20. M. A. Khojastepour and B. Aazhang, “The capacity of average and peak power constrained fading channels with channel side information,” in Proceedings of the IEEE Wireless Communications and Networking Conference, vol. 2, pp. 77–82, Atlanta, Ga, USA, March 2004.
  21. Y. Ding, T. N. Davidson, and K. M. Wong, “On improving the BER performance of rate-adaptive block transceivers, with applications to DMT,” in Proceedings of the IEEE Global Communications Conference, vol. 3, pp. 1654–1658, San Francisco, Calif, USA, December 2003.
  22. D. P. Palomar, A unified framework for communications through MIMO channels [Ph.D. thesis], Universitat politecnica de Catalunya, Barcelona, Spain, 2003.
  23. A. M. Wyglinski, F. Labeau, and P. Kabal, “Bit loading with BER-constraint for multicarrier systems,” IEEE Transactions on Wireless Communications, vol. 4, no. 4, pp. 1383–1387, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. G. D. Forney, R. G. Gallager, G. R. Lang, F. M. Longstaff, and S. U. Qureshi, “Efficient modulation for bandlimited channels,” IEEE Journal on Selected Areas in Communications, vol. 2, no. 5, pp. 632–647, 1984. View at Google Scholar · View at Scopus
  25. J. M. Cioffi, Digital Communication, Department of Electrical Engineering, Stanford University, Stanford, Calif, USA, 2007, Course.
  26. D. P. Palomar, M. A. Lagunas, and J. M. Cioffi, “Optimum linear joint transmit-receive processing forMIMO channels with QoS constraints,” IEEE Transactions on Signal Processing, vol. 52, no. 5, pp. 1179–1197, 2004. View at Google Scholar
  27. J. G. Proakis, Digital Communications, Electrical engineering, McGraw-Hill, New York, NY, USA, 3rd edition, 1995.
  28. K. Cho and D. Yoon, “On the general BER expression of one- and two-dimensional amplitude modulations,” IEEE Transactions on Communications, vol. 50, no. 7, pp. 1074–1080, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Fox, “Discrete optimization via marginal analysis,” Management Science, vol. 13, no. 3, pp. 210–216, 1966. View at Google Scholar
  30. P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “Practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Transactions on Communications, vol. 43, no. 2, pp. 773–775, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Campello, “Optimal discrete bit loading for multicarrier modulation systems,” in IEEE International Symposium on Information Theory, p. 193, IEEE Publishing, Cambridge, Mass, USA, 1998. View at Google Scholar
  32. H. E. Levin, “A complete and optimal data allocation method for practical discrete multitone systems,” in Proceedings of the IEEE Global Communications Conference, vol. 1, pp. 369–374, San Antonio, Tex, USA, November 2001.
  33. J. Campello, “Practical bit loading for DMT,” in Proceedings of the IEEE International Conference on Communications, vol. 2, pp. 801–805, British Columbia, Canada, June 1999.
  34. G.992.3, Asymmetric Digital Subscriber Line Transceivers, ITU-T Recommendation, Geneva, Switzerland, 2002.
  35. Z.-Q. Luo and W. Yu, “An introduction to convex optimization for communications and signal processing,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 8, Article ID 1664998, pp. 1426–1438, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, UK, 2004.
  37. A. Pascual-Iserte, Channel state information and joint transmitter-receiver design in multi-antenna systems [Ph.D. thesis], Universitat Politecnica de Catalunya, Barcelona, Spain, 2004.
  38. L.-P. Zhu, Y. Yao, S.-D. Zhou, and S.-W. Dong, “A heuristic optimal discrete bit allocation algorithm for margin maximization in DMT systems,” Eurasip Journal on Advances in Signal Processing, vol. 2007, Article ID 12140, 7 pages, 2007. View at Publisher · View at Google Scholar
  39. R. J. Wilson, “An introduction to matroid theory,” The American Mathematical Monthly, vol. 80, no. 5, pp. 500–525, 1973. View at Google Scholar
  40. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Advances in Computational Mathematics, vol. 5, no. 4, pp. 329–359, 1996. View at Google Scholar · View at Scopus