Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2013, Article ID 245867, 12 pages
http://dx.doi.org/10.1155/2013/245867
Research Article

Bayesian Compressive Sensing as Applied to Directions-of-Arrival Estimation in Planar Arrays

ELEDIA Research Center @ DISI, University of Trento, Via Sommarive 5, 38123 Trento, Italy

Received 19 May 2013; Accepted 19 June 2013

Academic Editor: Sandra Costanzo

Copyright © 2013 Matteo Carlin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. J. Candes and M. B. Wakin, “An introduction to compressive sampling: a sensing/sampling paradigm that goes against the common knowledge in data acquisition,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak, “Compressed channel sensing: a new approach to estimating sparse multipath channels,” Proceedings of the IEEE, vol. 98, no. 6, pp. 1058–1076, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Majumdar, R. K. Ward, and T. Aboulnasr, “Compressed sensing based real-time dynamic MRI reconstruction,” IEEE Transactions on Medical Imaging, vol. 31, no. 12, pp. 2253–2266, 2012. View at Google Scholar
  4. J. Yang, J. Thompson, X. Huang, T. Jin, and Z. Zhou, “Random-frequency SAR imaging based on compressed sensing,” IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 2, pp. 983–994, 2013. View at Google Scholar
  5. G. Oliveri, P. Rocca, and A. Massa, “A bayesian-compressive-sampling-based inversion for imaging sparse scatterers,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 10, pp. 3993–4006, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations,” IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 5, pp. 2920–2936, 2013. View at Google Scholar
  7. S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2346–2356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, 1986. View at Google Scholar · View at Scopus
  9. R. Roy and T. Kailath, “ESPRIT—estimation of signal parameters via rotational invariance techniques,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp. 984–995, 1989. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Ziskind and M. Wax, “Maximum likelihood localization of multiple sources by alternating projection,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, no. 10, pp. 1553–1560, 1988. View at Publisher · View at Google Scholar · View at Scopus
  11. A. H. El Zooghby, C. G. Christodoulou, and M. Georgiopoulos, “A neural network-based smart antenna for multiple source tracking,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 5, pp. 768–776, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Pastorino and A. Randazzo, “The SVM-based smart antenna for estimation of the directions of arrival of electromagnetic waves,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 6, pp. 1918–1925, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Donelli, F. Viani, P. Rocca, and A. Massa, “An innovative multiresolution approach for DOA estimation based on a support vector classification,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 8, pp. 2279–2292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J.-J. Fuchs, “On the application of the global matched filter to DOA estimation with uniform circular arrays,” IEEE Transactions on Signal Processing, vol. 49, no. 4, pp. 702–709, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Model and M. Zibulevsky, “Signal reconstruction in sensor arrays using sparse representations,” Signal Processing, vol. 86, no. 3, pp. 624–638, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. C. Gurbuz, V. Cevher, and J. H. McClellan, “Bearing estimation via spatial sparsity using compressive sensing,” IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no. 2, pp. 1358–1369, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Malioutov, M. Çetin, and A. S. Willsky, “A sparse signal reconstruction perspective for source localization with sensor arrays,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 3010–3022, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. M. Hyder and K. Mahata, “Direction-of-arrival estimation using a mixed 2,0 norm approximation,” IEEE Transactions on Signal Processing, vol. 58, no. 9, pp. 4646–4655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Zhu, G. Leus, and G. B. Giannakis, “Sparsity-cognizant total least-squares for perturbed compressive sampling,” IEEE Transactions on Signal Processing, vol. 59, no. 5, pp. 2002–2016, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Bilik, “Spatial compressive sensing for direction-of-arrival estimation of multiple sources using dynamic sensor arrays,” IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 3, pp. 1754–1769, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Zhang and B. D. Rao, “Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning,” IEEE Journal on Selected Topics in Signal Processing, vol. 5, no. 5, pp. 912–926, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Carlin and P. Rocca, “A Bayesian compressive sensing strategy for direction-of-arrival estimation,” in Proceedings of the European Conference on Antennas and Propagation (EuCAP '12), pp. 1–2, Prague, Czech Republic, March 2012.
  23. M. Carlin, P. Rocca, G. Oliveri, and A. Massa, “Multi-task Bayesian compressive sensing for direction-of-arrival estimation,” in Proceedings of the IEEE International Conference on Wireless Information Technology and Systems (ICWITS '12), Maui, Hawaii, USA, November 2012.
  24. M. Carlin, P. Rocca, G. Oliveri, F. Viani, and A. Massa, “Directions-of-arrival estimation through Bayesian compressive sensing strategies,” IEEE Transactions on Antennas and Propagation, 2013. View at Publisher · View at Google Scholar
  25. G. Oliveri and A. Massa, “Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 2, pp. 467–481, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. E. Tipping, “Sparse Bayesian learning and the relevance vector machine,” Journal of Machine Learning Research, vol. 1, no. 3, pp. 211–244, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Oliveri, M. Carlin, and A. Massa, “Complex-weight sparse linear array synthesis by Bayesian Compressive Sampling,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 5, pp. 2309–2326, 2012. View at Google Scholar
  28. S. Ji, D. Dunson, and L. Carin, “Multitask compressive sensing,” IEEE Transactions on Signal Processing, vol. 57, no. 1, pp. 92–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. E. T. Northardt, I. Bilik, and Y. I. Abramovich, “Spatial compressive sensing for direction of-arrival estimation with bias mitigation via expected likelihood,” IEEE Transactions on Signal Processing, vol. 61, no. 5, pp. 1183–1106, 2013. View at Google Scholar
  30. Z. Yang, L. Xie, and C. Zhang, “Off-grid direction of arrival estimation using sparse Bayesian inference,” IEEE Transactions on Signal Processing, vol. 61, no. 1, pp. 38–43, 2013. View at Google Scholar