Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2013, Article ID 391652, 12 pages
http://dx.doi.org/10.1155/2013/391652
Research Article

An Integrative Approach to Accurate Vehicle Logo Detection

1Lucas Varity Langzhong Brake Co., Ltd, Langfang Development Zone, Hebei 065001, China
2Department of Computer Science and Software Engineering, Xi’an Jiaotong-Liverpool University, SIP, Suzhou 215123, China

Received 9 April 2013; Accepted 4 September 2013

Academic Editor: Mohammad S. Alam

Copyright © 2013 Hao Pan and Bailing Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Wei, Q. S. Zhang, and M. Wang, “A method of vehicle classification using models and neural networks,” in Proceedings of the IEEE VTS 53rd Vehicular Technology Conference (VTS SPRING '01), vol. 4, pp. 3022–3026, May 2001. View at Scopus
  2. V. Petrovic and T. Cootes, “Analysis of features for rigid structure vehicle type recognition,” in Proceedings of the British Machine Vision Conference, vol. 2, pp. 587–596, Kingston, UK, September 2004.
  3. S. Sivaraman and M. M. Trivedi, “A general active-learning framework for on-road vehicle recognition and tracking,” IEEE Transactions on Intelligent Transportation Systems, vol. 11, no. 2, pp. 267–276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Zhang, C. Zhao, and J. He, “Classification of vehicle type and make by combined features and random subspace ensemble,” International Journal of Computational Vision and Robotics, vol. 3, no. 1-2, pp. 35–51, 2012. View at Publisher · View at Google Scholar
  5. B. Zhang, “Reliable classification of vehicle types based on cascade classifier ensembles,” IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 1, pp. 322–332, 2013. View at Publisher · View at Google Scholar
  6. B. Zhang, Y. Zhou, and H. Pan, “Vehicle classification with confidence by classified vector quantization,” IEEE Intelligent Transportation Systems, vol. 5, no. 3, pp. 8–20, 2013. View at Publisher · View at Google Scholar
  7. H. J. Lee, “Neural network approach to identify model of vehicles,” in Advances in Neural Networks—ISNN 2006, J. Wang, Z. Yi, J. M. Zurada, B. -L. Lu, and H. Yin, Eds., vol. 3973 of Lecture Notes in Computer Science, pp. 66–72, Springer, Berlin, Germany, 2006. View at Google Scholar
  8. D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV '99), pp. 1150–1157, September 1999. View at Scopus
  9. L. Dlagnekov and S. Belongie, “Recognizing cars,” Tech. Rep. CS2005-0833, University of California, San Diego, Calif, USA, 2005. View at Google Scholar
  10. A. P. Psyllos, C.-N. E. Anagnostopoulos, and E. Kayafas, “Vehicle logo recognition using a sift-based enhanced matching scheme,” IEEE Transactions on Intelligent Transportation Systems, vol. 11, no. 2, pp. 322–328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Viola and M. J. Jones, “Fast and robust classification using asymmetric AdaBoost and a detector cascade,” in Advances in Neural Information Processing Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds., pp. 1311–1318, MIT Press, 2001. View at Google Scholar
  12. N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), pp. 886–893, San Diego, Calif, USA, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. I. P. Alonso, D. F. Llorca, M. Á. Sotelo et al., “Combination of feature extraction methods for SVM pedestrian detection,” IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 2, pp. 292–307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Leibe, E. Seemann, and B. Schiele, “Pedestrian detection in crowded scenes,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), vol. 1, pp. 878–885, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Zhao and R. Nevatia, “Car detection in low resolution aerial image,” in Proceedings of the 8th IEEE International Conference on Computer Vision (ICCV '01), vol. 1, pp. 710–717, July 2001. View at Scopus
  16. P. Negri, X. Clady, S. Hanif, and L. Prevost, “A cascade of boosted generative and discriminative classifiers for vehicle detection,” EURASIP Journal on Advances in Signal Processing, vol. 2008, Article ID 782432, 12 pages, 2008. View at Publisher · View at Google Scholar
  17. J. Theeuwes, “Visual selective attention: a theoretical analysis,” Acta Psychologica, vol. 83, no. 2, pp. 93–154, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Steinman and B. Steinman, “Computational models of visual attention,” in Models of the Visual System, G. Hung and K. Ciuffreda, Eds., chapter 14, pp. 521–563, Kluwer Academic/Plenum, New York, NY, USA, 2002. View at Google Scholar
  19. J. Wolfe, “The level of attention attention: mediating between the stimulus and perception,” in Levels of Perception, L. Harris and M. Jenkin, Eds., pp. 169–191, Springer, 2003. View at Google Scholar
  20. D. Walther, U. Rutishauser, C. Koch, and P. Perona, “Selective visual attention enables learning and recognition of multiple objects in cluttered scenes,” Computer Vision and Image Understanding, vol. 100, no. 1-2, pp. 41–63, 2005. View at Publisher · View at Google Scholar
  21. W. C. Cheng and D. M. Jhan, “A cascade classifier using adaboost algorithm and support vector machine for pedestrian detection,” in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC '11), pp. 1430–1435, Anchorage, Alaska, USA, 2011.
  22. P. Negri, X. Clady, M. Milgram, and R. Poulenard, “An oriented-contour point based voting algorithm for vehicle type classification,” in Proceedings of the 18th International Conference on Pattern Recognition (ICPR '06), vol. 1, pp. 574–577, 2006.
  23. R. C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson Prentice Hall, New Jersey, NJ, USA, 3rd edition, 2008.
  24. Y. Freund and R. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of Computer and System Sciences, vol. 55, pp. 119–139, 1997. View at Publisher · View at Google Scholar
  25. J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a statistical view of boosting,” The Annals of Statistics, vol. 28, no. 2, pp. 337–407, 2000. View at Google Scholar
  26. A. Torralba, K. P. Murphy, and W. T. Freeman, “Sharing features: efficient boosting procedures for multiclass object detection,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '04), pp. 762–769, 2004.
  27. C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, vol. 20, pp. 273–297, 1995. View at Google Scholar
  28. http://graphics.cs.msu.ru/en/science/research/machinelearning/adaboosttoolbox.