Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2013, Article ID 454392, 13 pages
http://dx.doi.org/10.1155/2013/454392
Research Article

Ultra-Low Leakage Arithmetic Circuits Using Symmetric and Asymmetric FinFETs

Department of Electrical and Computer Engineering, Royal Military College of Canada, P.O. Box 17000, Station Forces, Kingston ON, Canada K7K 7B4

Received 14 May 2013; Revised 12 August 2013; Accepted 26 August 2013

Academic Editor: Mohamad Sawan

Copyright © 2013 Farid Moshgelani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Cayouette, Static power dissipation in arithmetic circuits [M.S. thesis], The Royal Military College of Canada, 2007.
  2. A. N. Bhoj and N. K. Jha, “Design of ultra-low-leakage logic gates and flip-flops in high-performance FinFET technology,” in Proceedings of the 12th International Symposium on Quality Electronic Design (ISQED '11), pp. 695–702, March 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Muttreja, N. Agarwal, and N. K. Jha, “CMOS logic design with independent-gate FinFETs,” in Proceedings of the IEEE International Conference on Computer Design (ICCD '07), pp. 560–567, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Agostinelli, M. Alioto, D. Esseni, and L. Selmi, “Leakage-delay tradeoff in finfet logic circuits: a comparative analysis with bulk technology,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 2, pp. 232–245, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. G. Fossum, “UFDG MOSFET MODEL (Linux Ver.3.71),” SOI Group, 32611-6130, University of Florida Gainesville, Gainesville, Fla, USA, 2010.
  6. M. Alioto, “Comparative evaluation of layout density in 3T, 4T, and MT FinFET standard cells,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 5, pp. 751–762, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S. M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits Analysis and Design, McGraw-Hill, New York, NY, USA, 2003.
  8. M. Vesterbacka, “14-Transistor CMOS full adder with full voltage-swing nodes,” Proceedings of the IEEE Workshop on Signal Processing Systems (SiPS '99), pp. 713–722, 1999. View at Google Scholar · View at Scopus
  9. S. Veeramachaneni, M. Kirthi Krishna, L. Avinash, S. R. Puppala, and M. B. Srinivas, “Novel architectures for high-speed and low-power 3-2, 4-2 and 5-2 compressors,” in Proceedings of the 20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID '07), pp. 324–329, January 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Vinoth, V. S. K. Bhaaskaran, B. Brindha et al., “A novel low power and high speed Wallace tree multiplier for RISC processor,” in Proceedings of the 3rd International Conference on Electronics Computer Technology (ICECT '11), pp. 330–334, April 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. C.-H. Chang, J. Gu, and M. Zhang, “Ultra low-voltage low-power CMOS 4-2 and 5-2 compressors for fast arithmetic circuits,” IEEE Transactions on Circuits and Systems I, vol. 51, no. 10, pp. 1985–1997, 2004. View at Publisher · View at Google Scholar · View at Scopus