Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2013, Article ID 712376, 16 pages
http://dx.doi.org/10.1155/2013/712376
Review Article

Power Line Communications for Smart Grid Applications

1Kenus Informática, Paterna, Valencia, Spain
2European Technology Center (EuTEC), Sony Deutschland GmbH, Stuttgart, Germany
3Department of Telecommunications and Systems Engineering, Universitat Autónoma of Barcelona (UAB), Barcelona, Spain

Received 3 August 2012; Accepted 29 December 2012

Academic Editor: Ahmed Zeddam

Copyright © 2013 Lars Torsten Berger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. A. Hamilton, J. Miller, and B. Renz, “Understanding the benefits of smart grid,” Tech. Rep. DOE/NETL-2010/1413, U.S. Department of Energy, 2010. View at Google Scholar
  2. L. T. Berger and K. Iniewski, Smart Grid—Applicacions, Communications and Security, John Wiley & Sons, 2012.
  3. M. Burns, “NIST SGIP catalog of standards,” October 2010, http://collaborate.nist.gov/twiki-sggrid/bin/view/SmartGrid/SGIPCatalogOfStandards.
  4. P. A. Brown, “Power line communications—past present and future,” in Proceedings of the International Symposium on Power Line Communicatons and Its Applications (ISPLC '99), pp. 1–8, September 1999.
  5. S. Galli, A. Scaglione, and Z. Wang, “For the grid and through the grid: the role of power line communications in the smart grid,” Proceedings of the IEEE, vol. 99, no. 6, pp. 998–1027, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. The OPEN meter Consortium, “Description of current state-of-the-art of technology and protocols description of state-of-the-art of PLC-based access technology,” European Union Project Deliverable FP7-ICT-2226369, d 2.1 Part 2, Version 2.3, March 2009, http://www.openmeter.com/files/deliverables/OPEN-Meter%20WP2%20D2.1%20part2%20v2.3.pdf.
  7. IEEE Communication Society, “Best readings in power line communications,” http://www.comsoc.org/best-readings.
  8. SMB Smart Grid Strategic Group (SG3), “IEC smart grid standardization roadmap,” June 2010, http://www.iec.ch/smartgrid/downloads/sg3_roadmap.pdf.
  9. ITU Telecommunication Standardization Bureau Policy & Technology Watch Division, “Activities in smart grid standardization repository,” version 1.0., April 2010, http://www.itu.int/dms pub/itu-t/oth/48/01/T48010000020002PDFE.pdf.
  10. DKE German Commission for Electrical, Electronic & Information Technologies of DIN and VDE, “The German roadmap e-energy / smart grid,” April 2010, http://www.e-energy.de/documents/DKE%20Roadmap%20SmartGrid%20230410%20Engllish.pdf.
  11. State Grid Corporation of China, “SGCC framework and roadmap for strong and smart grid standards,” August 2010, http://collaborate.nist.gov/twiki-sggrid/pub/SmartGrid/SGIPDocumentsAndReferencesSGAC/China_State_Grid_Framework_and_Roadmap_for_SG_Standards.pdf.
  12. International Energy Agency, “Technology roadmap smart grids,” April 2011, http://www.iea.org/publications/freepublications/publication/smartgrids_roadmap.pdf.
  13. National Institute of Standards and Technology (NIST) and U.S. Department of Commerce, “NIST framework and roadmap for smart grid interoperability standards,” NIST Draft Publication, Release 1. 0, January 2010.
  14. K. Dostert, Powerline Communications, Prentice-Hall, 2001.
  15. G. Held, Understanding Broadband Over Power Line, CRC Press, 2006.
  16. P. Sobotka, R. Taylor, and K. Iniewski, “Broadband over power line communications: Home networking, broadband access, and smart power grids,” in Internet Networks: Wired, Wireless, and Optical Technologies, K. Iniewski, Ed., Devices, Circuits, and Systems, chapter 8, CRC Press, New York, NY, USA, 2009. View at Google Scholar
  17. R. Pighi and R. Raheli, “On multicarrier signal transmission for high-voltage power lines,” in Proceedings of the 9th International Symposium on Power Line Communications and Its Applications (ISPLC '05), pp. 32–36, Vancouver, Canada, April 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Duckhwa and L. Younghun, “A study on the compound communication network over the high voltage power line for distribution automation system,” in Proceedings of the 2nd International Conference on Information Security and Assurance (ISA '08), pp. 410–414, Busan, Korea, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Aquilu, I. G. J. Pijoan, and G. Sanchez, “Highvoltage multicarrier spread-spectrum system field test,” IEEE Transactions on Power Delelivery, vol. 24, no. 3, pp. 1112–1121, 2009. View at Google Scholar
  20. N. Strandberg and N. Sadan, “HV-BPL phase 2 field test report,” Tech. Rep. DOE/NETL-2009/1388, U.S. Department of Energy, 2009. View at Google Scholar
  21. P. A. A. F. Wouters, P. C. J. M. van der Wielen, J. Veen, P. Wagenaars, and E. F. Wagenaars, “Effect of cable load impedance on coupling schemes for MV power line communication,” IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 638–645, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Benato and R. Caldon, “Application of PLC for the control and the protection of future distribution networks,” in Proceedings of the IEEE International Symposium on Power Line Communications and Its Applications (ISPLC '07), pp. 499–504, Pisa, Italy, March 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Cataliotti, A. Daidone, and G. Tinè, “Power line communication in medium voltage systems: characterization of MV cables,” IEEE Transactions on Power Delivery, vol. 23, no. 4, pp. 1896–1902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Meier, M. Bittner, H. Widmer et al., “Pathloss as a function of frequency, distance and network topology for various LV and MV European powerline networks,” The OPERA Consortium, Project Deliverable, EC/IST FP6 Project no. 507667 D5v0.9, April 2005.
  25. A. Rubinstein, F. Rachidi, M. Rubinstein et al., “EMC guidelines,” The OPERA Consortium, IST Integrated Project Deliverable D9v1. 1, IST Integrated Project No 026920, October 2008.
  26. A. Vukicevic, Electromagnetic compatibility of power line communication systems [Ph.D. thesis], Ėcole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2008.
  27. Broadband Forum, “Next generation broadband access,” White Paper MR-185, Issue: 1, August 2009, http://www.broadband-forum.org/marketing/download/mktgdocs/NextGenAccessWhitePaper.pdf.
  28. D. E. Nordell, “Communication systems for distribution automation,” in Proceedings of the IEEE Transmission and Distribution Conference and Exposition, Bogota, Colombia, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Mak and D. Reed, “TWACS, a new viable twoway automatic communication system for distribution networks. Part I: outbound communication,” IEEE Transactions on Power Apparatus and Systems, vol. 101, no. 8, pp. 2941–2949, 1982. View at Google Scholar
  30. S. Mak and T. Moore, “TWACS, a new viable twoway automatic communication system for distribution networks. Part II: inbound communication,” IEEE Transactions on Power Apparatus and Systems, vol. 103, no. 8, pp. 2141–2147, 1984. View at Google Scholar
  31. The OPEN meter Consortium, “Open Public Extended Network Metering, Home page,” http://www.openmeter.com/.
  32. PRIME Alliance, “Powerline related intelligent metering evolution (PRIME),” http://www.prime-alliance.org.
  33. Électricité Réseau Distribution France, “G3-plc: Open standard for smart grid implementation,” http://www.maximintegrated.com/products/powerline/g3-plc/.
  34. K. Razazian, M. Umari, A. Kamalizad, V. Loginov, and M. Navid, “G3-PLC specification for powerline communication: Overview, system simulation and field trial results,” in Proceedings of the 14th Annual International Symposium on Power Line Communications and its Applications (ISPLC '10), pp. 313–318, Rio de Janeiro, Brazil, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Siohan, A. Zeddam, G. Avril et al., “State of the art, application scenario and specific requirements for PLC,” OMEGA, European Union Project Deliverable D3.1 v1.0, IST Integrated Project No ICT-213311, 2008, http://www.ict-omega.eu/publications/deliverables.html.
  36. G. Wood and M. Newborough, “Dynamic energy-consumption indicators for domestic appliances: environment, behaviour and design,” Energy and Buildings, vol. 35, no. 8, pp. 821–841, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. International Organization for Standartization, “Building automation and control systems—part 5: data communication protocol,” international standard ISO 16484-5, 2010.
  38. International Organization for Standartization, “Information technology—Home electronic system (HES) architecture—part 3–5: Media and media dependent layers Powerline for network based control of HES class 1,” international standard ISO/IEC 14543-3-5, First edition, May 2007.
  39. International Organization for Standartization, “Interconnection of information technology equipment—Control network protocol—Part 3: Power line channel specification,” international standard ISO/IEC 14908-3, Rvision 11, January 2011.
  40. American National Standards Institute/Electronic Industries Association (ANSI/EIA), “Control network power line (PL) channel specification,” ANSI/CEA-709.2-A, September 2006.
  41. L. T. Berger and G. Moreno-Rodríguez, “Power line communication channel modelling through concatenated IIR-filter elements,” Academy Publisher Journal of Communications, vol. 4, no. 1, pp. 41–51, 2009. View at Google Scholar
  42. S. Galli, “A simplified model for the indoor power line channel,” in Proceedings of the IEEE International Symposium on Power Line Communications and its Applications (ISPLC '09), pp. 13–19, Dresden, Germany, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. F. J. Cañete Corripio, L. Díez del Río, and J. T. Entrambasaguas Muňoz, “A time variant model for indoor power-line channels,” in Proceedings of the International Symposium on Power Line Communications (ISPLC '01), pp. 85–90, Malmö, Sweden, March 2001.
  44. F. J. Cañete, L. Díez, J. A. Cortñs, and J. T. Entrambasaguas, “Broadband modelling of indoor powerline channels,” IEEE Transactions on Consumer Electronics, vol. 48, no. 1, pp. 175–183, 2002. View at Google Scholar
  45. J. A. Cortñs, F. J. Cañete, L. Díez, and J. T. Entrambasaguas, “Characterization of the cyclic short-time variation of indoor power-line channels response,” in Proceedings of the International Symposium on Power Line Communications and Its Applications (ISPLC '05), pp. 326–330, Vancouver, Canada, April 2005.
  46. F. J. Cañete Corripio, J. A. Cortñs Arrabal, L. Díez del Río, and J. T. Entrambasaguas Muňoz, “Analysis of the cyclic short-term variation of indoor power line channels,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 7, pp. 1327–1338, 2006. View at Google Scholar
  47. M. Zimmermann and K. Dostert, “A multipath model for the powerline channel,” IEEE Transactions on Communications, vol. 50, no. 4, pp. 553–559, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Babic, M. Hagenau, K. Dostert, and J. Bausch, “Theoretical postulation of PLC channel model,” The OPERA Consortium, IST Integrated Project Deliverable D4v2.0, March 2005.
  49. H. Liu, J. Song, B. Zhao, and X. Li, “Channel study for medium-voltage power networks,” in Proceedings of the IEEE International Symposium on Power Line Communications (ISPLC '06), pp. 245–250, Orlando, Fla, USA, March 2006.
  50. European Telecommunication Standards Institute (ETSI), “Powerline Telecommunications (PLT); MIMO PLT; Part 1: Measurement Methods of MIMO PLT,” February 2012.
  51. C. R. Paul, Analysis Of Multiconductor Transmission Lines, John Wiley & Sons, 1994.
  52. T. Magesacher, P. Ödling, P. O. Börjesson et al., “On the capacity of the copper cable channel using the common mode,” in Proceedings of the IEEE Global Telecommunications Conference, pp. 1269–1273, November 2002. View at Scopus
  53. T. Sartenaer, Multiuser communications over frequency selective wired channels and applications to the powerline access network [Ph.D. thesis], Faculty of Applied Sciences of the Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2004.
  54. D. Sabolic, A. Bazant, and R. Malaric, “Signal propagation modeling in power-line communication networks,” IEEE Transactions on Power Delivery, vol. 20, no. 4, pp. 2429–2436, 2005. View at Google Scholar
  55. T. Banwell and S. Galli, “A novel approach to the modeling of the indoor power line channel part I: circuit analysis and companion model,” IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 655–663, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Galli and T. Banwell, “A novel approach to the modeling of the indoor power line channel—part II: transfer function and its properties,” IEEE Transactions on Power Delivery, vol. 20, no. 3, pp. 1869–1878, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Magesacher, P. Ödling, P. O. Börjesson, and S. Shamai, “Information rate bounds in common-mode aided wireline communications,” European Transactions on Telecommunications, vol. 17, pp. 533–545, 2006. View at Google Scholar
  58. R. Hashmat, P. Pagani, A. Zeddam, and T. Chonave, “MIMO communications for inhome PLC Networks: Measurements and results up to 100 MHz,” in Proceedings of the 14th Annual International Symposium on Power Line Communications and its Applications (ISPLC '10), pp. 120–124, Rio de Janeiro, Brasil, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Hashmat, P. Pagani, A. Zeddam, and T. Chonave, “A channel model for multiple input multiple output in-home power line networks,” in Proceedings of the IEEE International Symposium on Power Line Communications and Its Applications (ISPLC '11), pp. 35–41, April 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Versolatto and A. M. Tonello, “A MIMO PLC random channel generator and capacity analysis,” in Proceedings of the IEEE International Symposium on Power Line Communications and Its Applications (ISPLC '11), pp. 66–71, Udine, Italy, April 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. L. T. Berger, A. Schwager, P. Pagani, and D. Schneider, MIMO Power Line Communications: Narrow and Broadband Standards, EMC, and Advanced Processing, CRC Press, 2013.
  62. A. Schwager, W. Bäschlin, J. Moreno et al., “European MIMO PLC field measurements: overview of the ETSI STF410 campaign & EMI analysis,” in Proceedings of the International Symposium on Power Line Communications and Its Applications (ISPLC '12), Beijing, China, 2012.
  63. D. Schneider, A. Schwager, W. Baschlin, and P. Pagani, “European MIMO PLC field measurements: channel analysis,” in Proceedings of the 16th IEEE International Symposium on Power Line Communications and Its Applications (ISPLC '12), pp. 304–309, March 2012.
  64. A. Schwager, Powerline communications: significant technologies to become ready for integration [Ph.D. thesis], Universität Duisburg-Essen, Fakultät für Ingenieurwissenschaften, Duisburg-Essen, Germany, 2010.
  65. A. Schwager, D. Schneider, W. Baschlin, A. Dilly, and J. Speidel, “MIMO PLC: theory, measurements and system setup,” in IEEE International Symposium on Power Line Communications and Its Applications (ISPLC '11), pp. 48–53, April 2011.
  66. M. Zimmermann and K. Dostert, “An analysis of the broadband noise scenario in power-line networks,” in Proceedings of the International Symposium on Power Line Communications and Its Applications (ISPLC '00), pp. 131–138, Limerick, Ireland, April 2000.
  67. F. J. Cañete, J. A. Cortñs, L. Díez, and J. T. Entrambasaguas, “Modeling and evaluation of the indoor power line transmission medium,” IEEE Communications Magazine, vol. 41, no. 4, pp. 41–47, 2003. View at Google Scholar
  68. R. Hashmat, P. Pagani, A. Zeddam, and T. Chonavel, “Measurement and analysis of inhome MIMO PLC channel noise,” in Proceedings of the 4th Workshop on Power Line Communications, Boppard, Germany, September 2010.
  69. P. Pagani, R. Hashmat, A. Schwager, D. Schneider, and W. Baschlin, “European mimo plc field measurements: noise analysis,” in Proceedings of the 16th IEEE International Symposium on Power Line Communications and Its Applications (ISPLC '12), pp. 310–315, March 2012.
  70. L. T. Berger, “Broadband powerline communications,” in Convergence of Mobile and Stationary Next Generation Networks, K. Iniewski, Ed., chapter 10, pp. 289–316, John Wiley & Sons, Hoboken, NJ, USA, 2010. View at Google Scholar
  71. A. Schwager, L. Stadelmeier, and M. Zumkeller, “Potential of broadband power line home networking,” in Proceedings of the 2nd IEEE Consumer Communications and Networking Conference (CCNC '05), pp. 359–363, January 2005. View at Scopus
  72. M. Tlich, P. Pagani, G. Avril et al., “PLC channel characterization and modelling,” OMEGA, European Union Project Deliverable D3.3 v1.0, IST Integrated Project No ICT-213311, December 2008, http://www.ict-omega.eu/publications/deliverables.html.
  73. European Committee for Electrotechnical Standardization (CENELEC), “Signalling on low-voltage electrical installations in the frequency range 3 kHz to 148,5 kHz - Part 1: General requirements, frequency bands and electromagnetic disturbances,” Standard EN 50065-1, September 2010.
  74. National Institute of Standards and Technology (NIST), “Priority Action Plan 15 (PAP15): Harmonize Power Line Carrier Standards for Appliance Communications in the Home,” Coexistence of narrow band power line communication technologies in the unlicensed FCC band, April 2010, http://collaborate.nist.gov/twiki-sggrid/pub/SmartGrid/PAP15PLCForLowBitRates/NB_PLC_coexistence_paper_rev3.doc.
  75. L. T. Berger, “Wireline communications in smart grids,” in Smart Grid—Applicacions, Communications and Security, L. T. Berger and K. Iniewski, Eds., chapter 7, John Wiley & Sons, Hoboken, NJ, USA, 2012. View at Google Scholar
  76. FCC, “Title 47 of the code of federal regulations (CFR),” Tech. Rep. 47 CFR §15, Federal Communications Commission, 2008, http://www.fcc.gov/encyclopedia/rules-regulations-title-47. View at Google Scholar
  77. Association of Radio Industries and Businesses (ARIB), “Power line communication equipment (10kHz-450kHz),” sTD-T84, Ver. 1.0, (in Japanese), November 2002, http://www.arib.or.jp/english/html/overview/doc/1-STD-T84v1_0.pdf.
  78. Comité International Spécial des Perturbations Radioélectriques, “Information technology equipment; Radio disturbance characteristics; Limits and methods of measurement,” ICS CISPR, International Standard Norme CISPR 22:1997, 1997.
  79. Comité International Spécial des Perturbations Radioélectriques, “Specification for radio disturbance and immunity measuring apparatus and methods part 1-1: Radio disturbance and immunity measuring apparatus—Measuring apparatus,” 2003.
  80. Comité International Spécial des Perturbations Radioélectriques, “Amendment to CISPR 22: Clarification of its application to telecommunicationsystem on the method of disturbance measurement at ports used for PLC,” 2003.
  81. Comité International Spécial des Perturbations Radioélectriques, “CISPR 22 am3 f1 ed. 5.0, Limits and method of measurement of broadband telecommunication equipment over power lines,” February 2008.
  82. Comité International Spécial des Perturbations Radioélectriques, “Report on mitigation factors and methods for power line telecommunications,” February 2008.
  83. European Telecommunication Standards Institute (ETSI), “PowerLine Telecommunications (PLT); Coexistence between PLT Modems and Short Wave Radio broadcasting services,” August 2008.
  84. Comité International Spécial des Perturbations Radioélectriques, “Amendment 1 to CISPR 22 ed. 6.0: Addition of limits and methods of measurement for conformance testing of power line telecommunication ports intended for the connection to the mains,” July 2009.
  85. European Committee for Electrotechnical Standardization, “Power line communication apparatus used in low-voltage installations—Radio disturbance characteristics—Limits and methods of measurement—Part 1: Apparatus for in-home use,” November 2012.
  86. R. Razafferson, P. Pagani, A. Zeddam et al., “Report on electro magnetic compatibility of power line communications,” OMEGA, European Union Project Deliverable D3.3 v3.0, IST Integrated Project No ICT-213311, April 2010, http://www.ict-omega.eu/publications/deliverables.html.
  87. Institute of Electrical and Electronics Engineers, “IEEE standard for power line communication equipment–Electromagnetic compatibility (EMC) requirements–Testing and measurement methods,” January 2011.
  88. PRIME Alliance, “Draft standard for PoweRline Intelligent Metering Evolution,” 2010, http://www.prime-alliance.org/Docs/Ref/PRIME-Spec_v1.3.6.pdf.
  89. ITU - Telecommunication Standardization Sector STUDY GROUP 15, “Narrowband orthogonal frequency division multiplexing power line communication transceivers for G3-PLC networks,” Recommendation ITU-T G.9903, October 2012, approved.
  90. ITU - Telecommunication Standardization Sector STUDY GROUP 15, “Narrowband orthogonal frequency division multiplexing power line communication transceivers for PRIME networks,” Recommendation ITU-T G.9904, October 2012, approved.
  91. NIST Priority Action Plan 15, “Narrowband PLC coexistence requirement,” October 2011, http://collaborate.nist.gov/twiki-sggrid/pub/SmartGrid/PAP15PLCForLowBitRates/Requirements_on_NB_PLC_coexistence_Final_Oct_11r1.xls.
  92. I. Berganza, A. Sendin, and J. Arriola, “Prime: powerline intelligent metering evolution,” in Proceedings of the CIRED Seminar 2008: SmartGrids for Distribution, pp. 1–3, Frankfurt, Germany, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. National Institute of Standards and Technology (NIST), U.S. Department of Commerce, “Specification for the advanced encryption standard (AES),” Federal Information Processing Standards Publication 197, November 2001.
  94. International Electrotechnical Commission (IEC), “Distribution automation using distribution line carrier systems—Part 4: Data communication protocols—Section 32: Data link layer—Logical link control (LLC),” November 1997.
  95. International Electrotechnical Commission (IEC), “Electricity metering—Data exchange for meter reading, tariff and load control—Part 62: Interface classes,” Standard IEC 62056-62, 2nd ed., November 2006.
  96. International Electrotechnical Commission (IEC), “Distribution automation using distribution line carrier systems—Part 5-1: Lower layer profiles—The spread frequency shift keying (S-FSK) profile,” Standard IEC 61334-5-1, 2nd ed., 2001.
  97. Electricité Réseau Distribution France (ERDF), “G3-PLC physical layer specification,” August 2009, http://www.maximintegrated.com/products/powerline/pdfs/G3-PLC-Physical-Layer-Specification.pdf.
  98. Electricité Réseau Distribution France (ERDF), “G3-PLC MAC layer specification,” August 2009, http://www.maximintegrated.com/products/powerline/pdfs/G3-PLC-MAC-Layer-Specification.pdf.
  99. Electricité Réseau Distribution France (ERDF), “G3-PLC profile specification,” August 2009, http://www.maximintegrated.com/products/powerline/pdfs/G3-PLC-Profile-Specification.pdf.
  100. K. Razazian, “G3-PLC provides an ideal communication platform for the smart gird,” in Proceedings of the IEEE Internatinal Symposium on Power Line Communications and Its Applications (ISPLC '10), Rio de Janeiro, Brazil, March 2010.
  101. Institute of Electrical and Electronics Engineers, “Local and metropolitan area networks—Specific requirements part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs),” standard for Information Technology—Telecommunications and Information Exchange Between Systems, September 2006.
  102. Z. Shelby and C. Bormann, 6LoWPAN: TheWireless Embedded Internet, John Wiley & Sons, 2009.
  103. S. Deering and R. Hinden, “Internet protocol, version 6 (IPv6) specification,” RFC 2460, December 1998, http://tools.ietf.org/html/rfc2460.
  104. American National Standards Institute (ANSI), “Utility industry end device data tables,” ANSI Standard C12.19, 2008.
  105. International Electrotechnical Commission (IEC), “Electricity metering—Data exchange for meter reading, tariff and load control—Part 61: Object identification system (OBIS),” international standard IEC 62056-61, second edition, November 2006.
  106. International Electrotechnical Commission (IEC), “Electricity metering—Data exchange for meter reading, tariff and load control—Part 62: Interface classes,” international standard IEC 62056-62, second edition, November 2006.
  107. M. Hoch, “Comparison of PLC G3 and PRIME,” in Proceedings of the IEEE International Symposium on Power Line Communications and Its Applications (ISPLC '11), pp. 165–169, Udine, Italy, April 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. V. Oksman and J. Zhang, “G.HNEM: the new ITU-T standard on narrowband PLC technology,” IEEE Communications Magazine, vol. 49, no. 12, pp. 36–44, 2011. View at Google Scholar
  109. J. LeClare, “IEEE 1901.2 PAP15 update,” Presentation to NIST PAP-15 SGIP Plenary Meeting, Chicago, Ill, USA, at Grid Interop, December 2010, http://collaborate.nist.gov/twiki-sggrid/pub/SmartGrid/PAP15PLCForLowBitRates/PAP15_IEEE_1901_2_Update.ppt.
  110. ITU - Telecommunication Standardization Sector STUDY GROUP 15, “Narrowband orthogonal frequency division multiplexing power line communication transceivers—Power spectral density specification,” Recommendation ITU-T G.9901, November 2012, approved.
  111. ITU - Telecommunication Standardization Sector STUDY GROUP 15, “Narrowband orthogonal frequency division multiplexing power line communication transceivers for G.hnem networks,” Recommendation ITU-T G.9902, October 2012, approved.
  112. O. Monnier, “TI delivers flexible power line communications solutions,” White Paper, September 2010, http://www.ti.com/lit/wp/slyy026/slyy026.pdf.
  113. Intellon, http://www.intellon.com/.
  114. DS2, Design of Systems on Silicon, “Your world. Connected,” http://www.marvell.com/.
  115. Gigle Networks Inc., http://www.giglenetworks.com/.
  116. Panasonic Communications Co., Ltd., “Ideas for life,” http://panasonic.net/corporate/segments/psn/.
  117. HomePlug Powerline Alliance, https://www.homeplug.org/home.
  118. Universal Powerline Association (UPA), http://en.wikipedia.org/wiki/Universal_Powerline_Association.
  119. High Definition Power Line Communication Alliance (HD-PLC), http://www.hd-plc.org/.
  120. International Telecommunications Union (ITU), “ITU-T Recommendation G.9960,” Unified highspeed wire-line based home networking transceivers—Foundation, August 2009.
  121. International Telecommunications Union (ITU), “ITU-T Recommendation G.9961, Data link layer (DLL) for unified high-speed wire-line based home networking transceivers,” June 2010.
  122. International Telecommunications Union (ITU), “ITU-T Recommendation G.9963, Unified high-speed wire-line based home networking transceivers—Multiple Input/Multiple Output (MIMO),” g.9963 (ex G.hn-MIMO), September 2011.
  123. HomeGrid Forum, “For any wire, anywhere in your home,” http://www.homegridforum.org/.
  124. Institute of Electrical and Electronic Engineers (IEEE), “Standards Association, Working group P1901,” IEEE standard for broadband over power line networks: Medium access control and physical layer specifications, http://grouper.ieee.org/groups/1901/.
  125. Institute of Electrical and Electronics Engineers (IEEE) Standards Association and P1901 Working Group, “IEEE P1901 Draft standard for broadband over power line networks: Medium access control and physical layer specifications,” July 2009.
  126. Institute of Electrical and Electronics Engineers Standards Association and Working Group P1905.1, “Draft standard for a convergent digital home network for heterogeneous technologies,” 2012, http://standards.ieee.org/develop/project/1905.1.html.
  127. S. Galli, A. Kurobe, and M. Ohura, “The inter-PHY protocol (IPP): A simple coexistence protocol for shared media,” in Proceedings of the IEEE International Symposium on Power Line Communications and its Applications (ISPLC '09), pp. 194–200, Dresden, Germany, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. H. C. Ferreira, L. Lampe, J. Newbury, and T. G. Swart, Eds., Power Line Communications: Theory and Applications For Narrowband and Broadband Communications Over Power Lines, John Wiley & Sons, 2010.
  129. International Telecommunications Union (ITU), “ITU-T Recommendation G.9972, Coexistence mechanism for wireline home networking transceivers,” June 2010.
  130. D. Su and S. Galli, “PAP 15 recommendations to SGIP on broadband PLC coexistence,” December 2010, http://collaborate.nist.gov/twiki-sggrid/pub/SmartGrid/PAP15PLCForLowBitRates/PAP15_-_Recommendation_to_SGIP_BB_CX_-_Final_-_APPROVED_2010-12-02.pdf.
  131. Consortium for Smart Energy Profile 2 Interoperability, “CSEP consortium for SEP2 interoperability,” 2011, http://www.csep.org/.
  132. ZigBee Alliance, “Smart Energy Profile 2.0 Application Protocol Specification,” v 0.7, April 2010, http://zigbee.org/Standards/ZigBeeSmartEnergy/Version20Documents.aspx.
  133. International Electrotechnical Commission (IEC), “Application integration at electric utilities—System interfaces for distribution management,” international standard IEC 61968, under development.
  134. International Electrotechnical Commission (IEC), “Energy management system application program interface (EMS-API),” international standard IEC 61970, under development.
  135. World Wide Web Consortium (W3C), “Extensible markup language (XML) 1.0,” W3C Recommendation, 5th ed., November 2008, http://www.w3.org/TR/REC-xml/.
  136. R. T. Fielding, Architectural styles and the design of network-based software architectures [Ph.D. thesis], University of California, Irvine, Calif, USA, 2000, http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.
  137. R. T. Fielding, J. Gettys, J. C. Mogul et al., “RFC 2616: Hypertext Transfer Protocol – HTTP/1.1,” June 1999, http://tools.ietf.org/html/rfc2616.
  138. V. Oksman and J. Egan, “Applications of ITUT G.9960, ITU-T G.9961 transceivers for Smart Grid applications: Advanced metering infrastructure, energy management in the home and electric vehicles,” Telecommunication Standartization Sector of ITU; Series G: Transmission Systems and Media, Digital Systems and Networks, ITU-T Technical Paper, June 2010, http://www.itu.int/dms_pub/itu-t/opb/tut/T-TUT-HOME-2010-PDF-E.pdf.