Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2013, Article ID 857530, 9 pages
http://dx.doi.org/10.1155/2013/857530
Research Article

Multimode/Multifrequency Low Frequency Airborne Radar Design

1Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della Calabria, 87036 Rende, Italy
2Consortium of Research on Advanced Remote Sensing Systems (CO.RI.S.T.A.), 80125 Napoli, Italy
3Italian Space Agency (ASI), Rome, Italy

Received 29 May 2013; Revised 16 September 2013; Accepted 17 September 2013

Academic Editor: Marcelo Sampaio de Alencar

Copyright © 2013 Sandra Costanzo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Hellsten, L. M. Ulander, A. Gustavsson, and B. Larsson, “Development of VHF CARABAS II SAR,” in Radar Sensor Technology, vol. 2747 of Proceedings of SPIE, pp. 48–60, April 1996. View at Scopus
  2. E. G. Njoku, W. J. Wilson, S. H. Yueh et al., “Observations of soil moisture using a passive and active low-frequency microwave airborne sensor during SGP99,” IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 12, pp. 2659–2673, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Smith-Jonforsen, L. M. H. Ulander, and X. Luo, “Low VHP-band backscatter from coniferous forests on sloping terrain,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 10, pp. 2246–2260, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. L. M. H. Ulander, M. Lundberg, W. Pierson, and A. Gustavsson, “Change detection for low-frequency SAR ground surveillance,” IEE Proceedings: Radar, Sonar and Navigation, vol. 152, no. 6, pp. 413–420, 2005. View at Publisher · View at Google Scholar
  5. M. E. Peters, D. D. Blankenship, S. P. Carter, S. D. Kempf, D. A. Young, and J. W. Holt, “Along-track focusing of airborne radar sounding data from west antarctica for improving basal reflection analysis and layer detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 9, pp. 2725–2736, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Scheiber, P. Prats, and F. Hélière, “Surface clutter suppression techniques for ice sounding radars: analysis of airborne data,” in Proceedings of the 7th European Conference on Synthetic Aperture Radar (EUSAR '08), pp. 1–4, Friedrichshafen, Germany, June 2008.
  7. K. C. Jezek, S. Gogineni, X. Wu et al., “Two-frequency radar experiments for sounding glacier ice and mapping the topography of the glacier bed,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 3, pp. 920–929, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Player, L. Shi, C. Allen et al., “A multi-channel depth-sounding radar with an improved power amplifier,” High-Frequency Electronics, pp. 18–29, 2010. View at Google Scholar
  9. F. Rodriguez-Morales, P. Gogineni, C. Leuschen et al., “Development of a multi-frequency airborne radar instrumentation package for ice sheet mapping and imaging,” in Proceedings of the IEEE MTT-S International Microwave Symposium (MTT '10), pp. 157–160, Anaheim, Calif, USA, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Shi, C. T. Allen, J. R. Ledford et al., “Multichannel coherent radar depth sounder for NASA operation ice bridge,” in Proceedings of the 30th IEEE International Geoscience and Remote Sensing Symposium (IGARSS '10), pp. 1729–1732, Honolulu, Hawaii, USA, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. L. M. H. Ulander, B. Flood, P. O. Frolind et al., “Bistatic VHF/UHF-band airborne SAR experiment,” in Proceedings of the IET International Conference on Radar Systems (Radar '12), pp. 22–25, Glasgow, UK, October 2012.
  12. A. Potsis, A. Reigber, and K. P. Papathanassiou, “Phase preserving method for RF interference suppression in P-band synthetic aperture radar interferometric data,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '99), pp. 2655–2657, Hamburg, Germany, July 1999. View at Scopus
  13. J. Dall, “A new frequency domain autofocus algorithm for SAR,” in Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS '91), pp. 1069–1072, Helsinki, Finland, June 1991. View at Scopus
  14. Y. Zhang, J. Wu, and H. Li, “Two simple and efficient approaches for compressing stepped chirp signals,” in Proceedings of the Asia-Pacific Microwave Conference (APMC '05), vol. 1, pp. 690–693, Suzhou, China, December 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. G. I. Cumming and H. F. Wong, Digital Processing of Synthetic Aperture Radar Data, Artech House, Boston, Mass, USA, 2005.
  16. J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar, John Wiley & Sons, New York, NY, USA, 1991.
  17. A. Moreira, J. Mittermayer, and R. Scheiber, “Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes,” IEEE Transactions on Geoscience and Remote Sensing, vol. 34, no. 5, pp. 1123–1136, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Moreira and Y. Huang, “Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 32, no. 5, pp. 1029–1040, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Gallon and F. Impagnatiello, “Motion compensation in chirp scaling SAR processing using phase gradient autofocusing,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '98), pp. 633–635, Seattle, Wash, USA, July 1998. View at Scopus
  20. G. Alberti, S. Dinardo, S. Mattei, C. Papa, and M. R. Santovito, “SHARAD radar signal processing technique,” in Proceedings of the 4th International Workshop on Advanced Ground Penetrating Radar (IWAGPR '07), pp. 261–264, Naples, Italy, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Costanzo and A. Costanzo, “Compact slotted antenna for wideband radar applications,” in Advances in Information Systems and Technologies, Á. Rocha, A. M. Correia, T. Wilson, and K. A. Stroetmann, Eds., vol. 206 of Advances in Intelligent Systems and Computing, pp. 989–996, 2013. View at Google Scholar
  22. S. Costanzo and A. Costanzo, “Compact U-slotted antenna for broadband radar applications,” Journal of Electrical and Computer Engineering, vol. 2013, Article ID 910146, 6 pages, 2013. View at Publisher · View at Google Scholar
  23. S. López-Peña, J.-F. Zürcher, R. Torres, A. G. Polimeridis, and J. R. Mosig, “Modeling and manufacturing of a series of identical antennas for a P-Band ice sounder,” in Proceedings of the 4th European Conference on Antennas and Propagation (EuCAP '10), Barcelona, Spain, April 2010. View at Scopus