Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2014 (2014), Article ID 108393, 9 pages
http://dx.doi.org/10.1155/2014/108393
Research Article

Image Denoising Using Fourth Order Wiener Filter with Wavelet Quadtree Decomposition

Department of Electrical and Computer Engineering, University of Balamand, 100 Koura, Lebanon

Received 12 November 2013; Revised 20 January 2014; Accepted 20 January 2014; Published 2 March 2014

Academic Editor: Sos Agaian

Copyright © 2014 Issam Dagher and Catherine Taleb. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. K. Castleman, Digital Image Processing, Prentice Hall, Upper Saddle River, NJ, USA, 1979.
  2. L. R. Lagendijk and J. Biemond, Iterative Identification and Restoration of Images, Kluwer Academic Publishers, Boston, Mass, USA, 1991.
  3. J. P. Rousseeeuw and C. Croux, “Alternatives to the median absolute deviation,” Journal of the American Statistical Association, vol. 88, no. 424, pp. 1273–1283, 1993. View at Publisher · View at Google Scholar
  4. D. L. Donoho, “De-noising by soft-thresholding,” IEEE Transactions on Information Theory, vol. 41, no. 3, pp. 613–627, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Antoniadis, J. Bigot, and T. Sapatinas, “Wavelet estimators in nonparametric regression: a comparative simulation study,” Journal of Statistical Software, vol. 6, pp. 1–83, 2001. View at Google Scholar · View at Scopus
  6. C. B. Smith, S. Agaian, and D. Akopian, “A wavelet-denoising approach using polynomial threshold operators,” IEEE Signal Processing Letters, vol. 15, pp. 906–909, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. T. D. Bui, G. Y. Chen, and A. Krzyzak, “Image denoising using neighbouring wavelet coefficients,” IEEE Transactions on Image Processing, vol. 2, no. 20, pp. 99–107, 2005. View at Google Scholar
  8. M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over learned dictionaries,” IEEE Transactions on Image Processing, vol. 15, no. 12, pp. 3736–3745, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Transactions on Image Processing, vol. 16, no. 8, pp. 2080–2095, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Egiazarian, K. Dabov, A. Foi, and V. Katkovnik, “BM3D image denoising with shape-adaptive principal component analysis,” in Proceedings of the Workshop on Signal Processing with Adaptive Sparse Structured Representations, 2009.
  12. L. Zhang, W. Dong, D. Zhang, and G. Shi, “Two-stage image denoising by principal component analysis with local pixel grouping,” Pattern Recognition, vol. 43, no. 4, pp. 1531–1549, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. N. Ellinas, T. Mandadelis, and A. Tzortzis, “The statistical modeling of wavelet coefficients as a tool for image de-noising,” in Proceedings of the 2nd International Conference on Information Technology and Quality, 2005.
  14. M. Kazubek, “Wavelet domain image denoising by thresholding and Wiener filtering,” IEEE Signal Processing Letters, vol. 10, no. 11, pp. 324–326, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Diniz, Adaptive Filtering: Algorithms and Practical Implementation, Springer, 2nd edition, 2010.