Table of Contents Author Guidelines Submit a Manuscript
Journal of Energy
Volume 2013 (2013), Article ID 571389, 11 pages
http://dx.doi.org/10.1155/2013/571389
Research Article

Influences of Contact Pressure on the Performances of Polymer Electrolyte Fuel Cells

Department Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India

Received 3 February 2013; Revised 13 May 2013; Accepted 18 May 2013

Academic Editor: Ching Yuan Chang

Copyright © 2013 Prakash C. Ghosh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, “A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research,” Applied Energy, vol. 88, no. 4, pp. 981–1007, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. B. C. H. Steel and A. Heinze, “Materials for fuel-cell technologies,” Nature, vol. 414, pp. 345–352, 2001. View at Google Scholar
  3. M. S. Dresselhaus and I. L. Thomas, “Alternative energy technologies,” Nature, vol. 414, no. 6861, pp. 332–337, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. P. C. Ghosh, T. Wüster, H. Dohle, N. Kimiaie, J. Mergel, and D. Stolten, “Analysis of single PEM fuel cell performances based on current density distribution measurement,” Journal of Fuel Cell Science and Technology, vol. 3, no. 3, pp. 351–357, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Alaefour, G. Karimi, K. Jiao, and X. Li, “Measurement of current distribution in a proton exchange membrane fuel cell with various flow arrangements—a parametric study,” Applied Energy, vol. 93, pp. 80–89, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Dohle, J. Mergel, and P. C. Ghosh, “DMFC at low air flow operation: study of parasitic hydrogen generation,” Electrochimica Acta, vol. 52, no. 19, pp. 6060–6067, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Panha, M. Fowler, X.-Z. Yuan, and H. Wang, “Accelerated durability testing via reactants relative humidity cycling on PEM fuel cells,” Applied Energy, vol. 93, pp. 90–97, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Nishimura, K. Shibuya, A. Morimoto et al., “Dominant factor and mechanism of coupling phenomena in single cell of polymer electrolyte fuel cell,” Applied Energy, vol. 90, no. 1, pp. 73–79, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. P. C. Ghosh, H. Dohle, and J. Mergel, “Modelling of heterogeneities inside polymer electrolyte fuel cells due to oxidants,” International Journal of Hydrogen Energy, vol. 34, no. 19, pp. 8204–8212, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Amar, Contact pressure distribution in polymer electrolyte fuel cell [M. Tech. dissertation], Indian Institute of Technology Bombay, 2010.
  11. J. Ihonen, F. Jaouen, G. Lindbergh, and G. Sundholm, “A novel polymer electrolyte fuel cell for laboratory investigations and in-situ contact resistance measurements,” Electrochimica Acta, vol. 46, no. 19, pp. 2899–2911, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. S. P. Jiang, J. G. Love, and L. Apateanu, “Effect of contact between electrode and current collector on the performance of solid oxide fuel cells,” Solid State Ionics, vol. 160, no. 1-2, pp. 15–26, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Dey, D. Singdeo, M. Bose, R. N. Basu, and P. C. Ghosh, “Study of contact resistance at the electrodeinterconnect interfaces in planar type Solid Oxide Fuel Cells,” Journal of Power Sources, vol. 233, pp. 290–298, 2013. View at Google Scholar
  14. V. Mishra, F. Yang, and R. Pitchumani, “Measurement and prediction of electrical contact resistance between gas diffusion layers and bipolar plate for applications to PEM fuel cells,” Journal of Fuel Cell Science and Technology, vol. 1, no. 1, pp. 2–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Nitta, O. Himanen, and M. Mikkola, “Contact resistance between gas diffusion layer and catalyst layer of PEM fuel cell,” Electrochemistry Communications, vol. 10, no. 1, pp. 47–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Liu, L. Peng, and X. Lai, “Effect of assembly error of bipolar plate on the contact pressure distribution and stress failure of membrane electrode assembly in proton exchange membrane fuel cell,” Journal of Power Sources, vol. 195, no. 13, pp. 4213–4221, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Y. Su, C. T. Liu, H. P. Chang, C. H. Li, K. J. Huang, and P. C. Sui, “A numerical investigation of the effects of compression force on PEM fuel cell performance,” Journal of Power Sources, vol. 183, no. 1, pp. 182–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. J. Lee, C. D. Hsu, and C. Huang, “Analyses of the fuel cell stack assembly pressure,” Journal of Power Sources, vol. 145, no. 2, pp. 353–361, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. W. R. Chang, J. J. Hwang, F. B. Weng, and S. H. Chan, “Effect of clamping pressure on the performance of a PEM fuel cell,” Journal of Power Sources, vol. 166, no. 1, pp. 149–154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Zhou, C. W. Wu, and G. J. Ma, “Contact resistance prediction and structure optimization of bipolar plates,” Journal of Power Sources, vol. 159, no. 2, pp. 1115–1122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Barber, T. S. Sun, E. Petrach, X. Wang, and Q. Zou, “Contact mechanics approach to determine contact surface area between bipolar plates and current collector in proton exchange membrane fuel cells,” Journal of Power Sources, vol. 185, no. 2, pp. 1252–1256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Q. Xing, K. W. Lum, H. J. Poh, and Y. L. Wu, “Optimization of assembly clamping pressure on performance of proton-exchange membrane fuel cells,” Journal of Power Sources, vol. 195, no. 1, pp. 62–68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Tan, Y. J. Chao, J. W. Van Zee, and W. K. Lee, “Degradation of elastomeric gasket materials in PEM fuel cells,” Materials Science and Engineering A, vol. 445-446, pp. 669–675, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Wang, Y. Song, and B. Zhang, “Experimental study on clamping pressure distribution in PEM fuel cells,” Journal of Power Sources, vol. 179, no. 1, pp. 305–309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Zhang, Y. Liu, H. Song, S. Wang, Y. Zhou, and S. J. Hu, “Estimation of contact resistance in proton exchange membrane fuel cells,” Journal of Power Sources, vol. 162, no. 2, pp. 1165–1171, 2006. View at Publisher · View at Google Scholar · View at Scopus