Table of Contents Author Guidelines Submit a Manuscript
Journal of Energy
Volume 2013 (2013), Article ID 581723, 4 pages
http://dx.doi.org/10.1155/2013/581723
Research Article

Extractive Deep Desulfurization of Liquid Fuels Using Lewis-Based Ionic Liquids

Advance Separation and Analytical Laboratory (ASAL), Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India

Received 21 December 2012; Revised 18 February 2013; Accepted 25 February 2013

Academic Editor: David Kubička

Copyright © 2013 Swapnil A. Dharaskar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Bösmann, L. Datsevich, A. Jess, A. Lauter, C. Schmitz, and P. Wasserscheid, “Deep desulfurization of diesel fuel by extraction with ionic liquids,” Chemical Communications, no. 23, pp. 2494–2495, 2001. View at Google Scholar · View at Scopus
  2. W. Dai, Y. Zhou, S. Wang, W. Su, Y. Sun, and L. Zhou, “Desulfurization of transportation fuels targeting at removal of thiophene/benzothiophene,” Fuel Processing Technology, vol. 89, no. 8, pp. 749–755, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Chu, Y. Hu, J. Li et al., “Desulfurization of diesel fuel by extraction with [BF4]—based ionic liquids,” Chinese Journal of Chemical Engineering, vol. 16, no. 6, pp. 881–884, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Parkinson, “Diesel desulfurization puts refiners in a quandary,” Chemical engineering, vol. 108, pp. 37–41, 2001. View at Google Scholar
  5. Central Pollution Control Board, “Status of the vehicular pollution control programme in India,” Tech. Rep. Probes/136/2010, Central Pollution Control Board, 2010. View at Google Scholar
  6. C. Kwak, J. J. Lee, J. S. Bae, K. Choi, and S. H. Moon, “Hydrodesulfurization of DBT, 4-MDBT, and 4,6-DMDBT on fluorinated CoMoS/Al2O3 catalysts,” Applied Catalysis A, vol. 200, no. 1, pp. 233–242, 2000. View at Google Scholar · View at Scopus
  7. C. Huang, B. Chen, J. Zhang, Z. Liu, and Y. Li, “Desulfurization of gasoline by extraction with new ionic liquids,” Energy and Fuels, vol. 18, no. 6, pp. 1862–1864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Dharaskar, “Ionic liquids (a review): the green solvents for petroleum and hydrocarbon industries,” Research Journal of Chemical Sciences, vol. 2, no. 8, pp. 80–85, 2012. View at Google Scholar
  9. X. Jiang, Y. Nie, C. Li, and Z. Wang, “Imidazolium-based alkylphosphate ionic liquids—a potential solvent for extractive desulfurization of fuel,” Fuel, vol. 87, no. 1, pp. 79–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. K. G. Knudsen, B. H. Cooper, and H. Topsoe, “Catalyst and process technology for ultra low sulfur diesel,” Applied Catalysis A, vol. 189, pp. 205–215, 1999. View at Google Scholar
  11. A. B. S. H. Salem and H. S. Hamid, “Removal of sulfur compounds from naphtha solutions using solid adsorbents,” Chemical Engineering and Technology, vol. 20, no. 5, pp. 342–347, 1997. View at Google Scholar · View at Scopus
  12. A. Takahashi, F. H. Yang, and R. T. Yang, “Desulfurization of gasoline by extraction with N-alkyl-pyridinium-based ionic liquids,” Industrial & Engineering Chemistry Research, vol. 41, pp. 2487–2496, 2002. View at Google Scholar
  13. M. P. Marszall, M. J. Makuszewski, and R. J. Kaliszan, “Separation of nicotinic acid and its structural isomers using 1-ethyl-3-methylimidazolium ionic liquid as a buffer additive by capillary electrophoresis,” Journal of Pharmaceutical and Biomedical Analysis, vol. 41, pp. 329–333, 2006. View at Publisher · View at Google Scholar
  14. K. A. Howard, H. L. Mitchell, and R. H. Waghore, US patent 4, 359, pp. 596, 1982.
  15. D. R. Boate and M. J. Zaworotko, “Organic Nonquaternary Clathrate Salts for Petroleum Separation,” US patent 5, 220, pp. 106, 1993.
  16. F. G. Sherif, L. Shyu, and C. C. Greco, “Linear alxylbenzene formation using low temperature ionic liquid,” US patent 5, 824, pp. 832, 1998.
  17. V. R. Koch, C. Nanjundiah, and R. T. Carlin, US patent 5, 872, pp. 602, 1998.
  18. S. M. Silvu, P. A. Suarcz, Z. de Souza, and R. F. Doupont, “Selective sulfur removal from fuels using ionic liquids at room temperature,” Polymer Bulletin, vol. 40, pp. 401–405, 1998. View at Google Scholar
  19. A. J. Carmichael, D. M. Haddlettn, S. A. F. Bon, and K. R. Seddon, “Copper (I) mediated living radical polymerization in an ionic liquid,” Chemical Communications, vol. 79, pp. 1237–1238, 2000. View at Google Scholar
  20. R. T. Carlin and J. S. Wilkes, “Effect of room temperature Ionic Liquids as replacement for volatile organic solvents in free radical polymerization,” Journal of Molecular Catalysis, vol. 63, pp. 125–129, 1990. View at Google Scholar
  21. M. Goledzinowski, V. I. Birss, and J. Galuszka, “Oligomerization of low molecular weight olefins in ambient temperature molten salts,” Industrial and Engineering Chemistry Research, vol. 32, no. 8, pp. 1795–1797, 1993. View at Google Scholar · View at Scopus
  22. G. Yu, J. Zhao, D. Song, C. Asumana, X. Zhang, and X. Chen, “Deep oxidative desulfurization of diesel fuels by acidic ionic liquids,” Industrial & Engineering Chemistry Research, vol. 50, pp. 11690–11697, 2011. View at Google Scholar
  23. Y. L. Yang and Y. Kou, “Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe,” Chemical Communications, vol. 10, no. 2, pp. 226–227, 2004. View at Google Scholar · View at Scopus
  24. X. Sun and S. Zhao, “[bmim]Cl/[FeCl3] ionic liquid as catalyst for alkylation of benzene with 1-octadecene,” Chinese Journal of Chemical Engineering, vol. 14, no. 3, pp. 289–293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. N. H. Ko, J. S. Lee, E. S. Huh et al., “Extractive desulfurization using Fe-containing ionic liquids,” Energy and Fuels, vol. 22, no. 3, pp. 1687–1690, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. D. P. Li, X. L. Hu, Y. M. Zhao, P. Guan, and J. Y. Yu, “Study of green solvents l-butyl-3-methylimidazolium Ionic liquids' structure and properties,” in Proceedings of the IEEE 4th International Conference on Bioinformatics and Biomedical Engineering (ICBBE '10), pp. 1–4, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Li, W. Zhu, Y. Wang, J. Zhang, J. Lu, and Y. Yan, “Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride,” Green Chemistry, vol. 11, pp. 810–815, 2009. View at Google Scholar