Table of Contents Author Guidelines Submit a Manuscript
Journal of Energy
Volume 2013 (2013), Article ID 654953, 8 pages
http://dx.doi.org/10.1155/2013/654953
Research Article

Natural Pigments from Plants Used as Sensitizers for TiO2 Based Dye-Sensitized Solar Cells

Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India

Received 27 June 2013; Accepted 21 September 2013

Academic Editor: Mattheos Santamouris

Copyright © 2013 Reena Kushwaha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. O'Regan and M. Gräetzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737–740, 1991. View at Google Scholar
  2. M. Grätzel, “Dye-sensitized solar cell,” Journal of Photochemistry and Photobiology C, vol. 4, pp. 145–153, 2003. View at Google Scholar
  3. M. Grätzel, “Sol-gel processed TiO2 films for photovoltaic applications,” Journal of Sol-Gel Science and Technology, vol. 22, no. 1-2, pp. 7–13, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Jiu, S. Isoda, M. Adachi, and F. Wang, “Preparation of TiO2 nanocrystalline with 3–5 nm and application for dye-sensitized solar cell,” Journal of Photochemistry and Photobiology A, vol. 189, no. 2-3, pp. 314–321, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. C.-S. Chou, F.-C. Chou, and J.-Y. Kang, “Preparation of ZnO-coated TiO2 electrodes using dip coating and their applications in dye-sensitized solar cells,” Powder Technology, vol. 215-216, pp. 38–45, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. T. S. Senthil, N. Muthukumarasamy, D. Velauthapillai, S. Agilan, M. Thambidurai, and R. Balasundaraprabhu, “Natural dye (cyanidin 3-O-glucoside) sensitized nanocrystalline TiO2 solar cell fabricated using liquid electrolyte/quasi-solid-state polymer electrolyte,” Renewable Energy, vol. 36, no. 9, pp. 2484–2488, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Kushwaha and L. Bahadur, “Characterization of synthetic Ni(II)-xylenol complex as a photosensitizer for wide-band gap ZnO semiconductor electrodes,” International Journal of Photoenergy, vol. 2011, Article ID 980560, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. S. Kanmani and K. Ramachandran, “Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications,” Renewable Energy, vol. 43, pp. 149–156, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. F. C. Krebs, “Fabrication and processing of polymer solar cells: a review of printing and coating techniques,” Solar Energy Materials and Solar Cells, vol. 93, no. 4, pp. 394–412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Japanese Journal of Applied Physics, vol. 45, no. 24–28, pp. L638–L640, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Buscaino, C. Baiocchi, C. Barolo et al., “A mass spectrometric analysis of sensitizer solution used for dye-sensitized solar cell,” Inorganica Chimica Acta, vol. 361, no. 3, pp. 798–805, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Zhang, H. Bala, Y. Cheng et al., “High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer,” Chemical Communications, no. 16, pp. 2198–2200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Srivastava and L. Bahadur, “Dye-sensitized solar cell based on nanocrystalline ZnO thin film electrodes combined with a novel light absorbing dye Coomassie Brilliant Blue in acetonitrile solution,” International Journal of Hydrogen Energy, vol. 37, no. 6, pp. 4863–4870, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Hao, J. Wu, Y. Huang, and J. Lin, “Natural dyes as photosensitizers for dye-sensitized solar cell,” Solar Energy, vol. 80, no. 2, pp. 209–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Wongcharee, V. Meeyoo, and S. Chavadej, “Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers,” Solar Energy Materials and Solar Cells, vol. 91, no. 7, pp. 566–571, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Calogero and G. D. Marco, “Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, vol. 92, no. 11, pp. 1341–1346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. K. E. Jasim, S. Al-Dallal, and A. M. Hassan, “Natural dye-sensitised photovoltaic cell based on nanoporous TiO2,” International Journal of Nanoparticles, vol. 4, no. 4, pp. 359–368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Sandquist and J. L. McHale, “Improved efficiency of betanin-based dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A, vol. 221, no. 1, pp. 90–97, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Sönmezoğlu, C. Akyürek, and S. Akin, “High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers,” Journal of Physics D, vol. 45, Article ID 425101, 2012. View at Google Scholar
  20. L. U. Okoli, J. O. Ozuomba, A. J. Ekpunobi, and P. I. Ekwo, “Anthocyanin-dyed TiO2 electrode and its performance on dye-sensitized solar cell,” Research Journal of Recent Sciences, vol. 1, pp. 22–27, 2012. View at Google Scholar
  21. R. Espinosa, I. Zumeta, J. L. Santana et al., “Nanocrystalline TiO2 photosensitized with natural polymers with enhanced efficiency from 400 to 600 nm,” Solar Energy Materials and Solar Cells, vol. 85, no. 3, pp. 359–369, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Yamazaki, M. Murayama, N. Nishikawa, N. Hashimoto, M. Shoyama, and O. Kurita, “Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells,” Solar Energy, vol. 81, no. 4, pp. 512–516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Zhu, H. Zeng, V. Subramanian, C. Masarapu, K.-H. Hung, and B. Wei, “Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes,” Nanotechnology, vol. 19, no. 46, Article ID 465204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Zhang, S. M. Lanier, J. A. Downing, J. L. Avent, J. Lum, and J. L. McHale, “Betalain pigments for dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A, vol. 195, no. 1, pp. 72–80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. W. H. Lai, Y. H. Su, L. G. Teoh, and M. H. Hon, “Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles,” Journal of Photochemistry and Photobiology A, vol. 195, no. 2-3, pp. 307–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. R. Hernández-Martínez, M. Estevez, S. Vargas, F. Quintanilla, and R. Rodríguez, “Natural pigment based dye sensitized solar cells,” Journal of Applied Research and Technology, vol. 10, pp. 38–47, 2012. View at Google Scholar
  27. M. R. Narayan, “Review: dye sensitized solar cells based on natural photosensitizers,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 208–215, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Aradhana, K. N. V. Rao, D. Banji, and R. K. Chaithanya, “A review on Tectona grandis.linn: chemistry and medicinal uses,” Herbal Tech Industry, vol. 6, no. 11, 2010. View at Google Scholar
  29. R. Mongkholrattanasit, J. Kryštůfek, J. Wiener, and J. Studničková, “Natural dye from Eucalyptus leaves and application for wool fabric dyeing by using padding techniques,” in Natural Dyes, E. A. Kumbasar, Ed., chapter 4, 2011. View at Google Scholar
  30. E. D. Caluwé, K. Halamová, and P. V. Damme, “Tamarindus indica L.: a review of traditional uses, phytochemistry and pharmacology,” Afrika Focus, vol. 23, pp. 53–83, 2010. View at Google Scholar