Table of Contents Author Guidelines Submit a Manuscript
Journal of Energy
Volume 2013, Article ID 926392, 10 pages
http://dx.doi.org/10.1155/2013/926392
Review Article

Recent Strategy of Biodiesel Production from Waste Cooking Oil and Process Influencing Parameters: A Review

Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore, Tamil Naclu 641 014, India

Received 25 February 2013; Revised 11 April 2013; Accepted 22 April 2013

Academic Editor: S. Venkata Mohan

Copyright © 2013 A. Gnanaprakasam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. K. Gupta, R. Kumar, B. S. Panesar, and V. K. Thapar, “Parametric studies on bio-diesel prepared from rice bran oil,” CIGR E-Journal, vol. 9, EE 06-007, 2007. View at Google Scholar
  2. O. J. Alamu, T. A. Akintola, C. C. Enweremadu, and A. E. Adeleke, “Characterization of palm-kernel oil biodiesel produced through NaOH-catalysed transesterification process,” Scientific Research and Essays, vol. 3, no. 7, pp. 308–311, 2008. View at Google Scholar · View at Scopus
  3. S. Fariku, A. E. Ndonya, and P. Y. Bitrus, “Biofuel characteristics of beniseed (Sesanum indicum) oil,” African Journal of Biotechnology, vol. 6, no. 21, pp. 2442–2443, 2007. View at Google Scholar · View at Scopus
  4. J. Connemann and J. Fischer, “Biodiesel processing technologies,” in Proceedings of the International Liquid Biofuels Congress, July 1998.
  5. F. Ullah, A. Nosheen, I. Hussain, and A. Bano, “Base catalyzed transesterification of wild apricot kernel oil for biodiesel production,” African Journal of Biotechnology, vol. 8, no. 14, pp. 3289–3293, 2009. View at Google Scholar · View at Scopus
  6. G. E. Diwani, N. K. Attia, and S. I. Hawash, “Development and evaluation of biodiesel fuel and by-products from jatropha oil,” International Journal of Environmental Science and Technology, vol. 6, no. 2, pp. 219–224, 2009. View at Google Scholar · View at Scopus
  7. F. O. Licht, “The Global Renewable Fuels Alliance is a non-profit organization dedicated to promoting biofuel friendly policies internationally,” Global Renewable Fuels Alliance, 2011. View at Google Scholar
  8. M. Canakci, “The potential of restaurant waste lipids as biodiesel feedstocks,” Bioresource Technology, vol. 98, no. 1, pp. 183–190, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Supple, R. Howard-Hildige, E. Gonzalez-Gomez, and J. J. Leahy, “The effect of steam treating waste cooking oil on the yield of methyl ester,” Journal of the American Oil Chemists' Society, vol. 79, no. 2, pp. 175–178, 2002. View at Google Scholar · View at Scopus
  10. D. Y. C. Leung, X. Wu, and M. K. H. Leung, “A review on biodiesel production using catalyzed transesterification,” Applied Energy, vol. 87, no. 4, pp. 1083–1095, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Rice, A. Fröhlich, and R. Leonard, “Bio-diesel production from camelina oil, waste cooking oil and tallow,” The Science of Farming and Food, 1998. View at Google Scholar
  12. Y. Feng, Q. Yang, X. Wang, Y. Liu, H. Lee, and N. Ren, “Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell,” Bioresource Technology, vol. 102, no. 1, pp. 411–415, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. The Endress+Hauser Group, http://www.au.endress.com/.
  14. G. Vicente, M. Martınez, and J. Araci, “Integrated biodiesel production: a comparison of different homogeneous catalysts systems,” Bioresource Technology, vol. 92, pp. 297–305, 2004. View at Google Scholar
  15. A. B. M. S. Hossain and A. N. Boyce, “Biodiesel production from waste sunflower cooking oil as an environmental recycling process and renewable energy,” Bulgarian Journal of Agricultural Science, vol. 15, no. 4, pp. 312–317, 2009. View at Google Scholar · View at Scopus
  16. A. B. M. S. Hossain, B. A. Nasrulhaq, A. Salleh, and S. Chandran, “Biodiesel production from waste soybean oil biomass as renewable energy and environmental recycled process,” African Journal of Biotechnology, vol. 9, no. 27, pp. 4233–4240, 2010. View at Google Scholar · View at Scopus
  17. G. Corro, N. Tellez, E. Ayala, and A. Marinez-Ayala, “Two-step biodiesel production from Jatropha curcas crude oil using SiO2·HF solid catalyst for FFA esterification step,” Fuel, vol. 89, no. 10, pp. 2815–2821, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Liu, T. McDonald, and Y. Wang, “Producing biodiesel from high free fatty acids waste cooking oil assisted by radio frequency heating,” Biotechnology Advances, vol. 28, no. 4, pp. 500–518, 2010. View at Google Scholar
  19. B. K. Highina, I. M. Bugaje, and B. Umar, “Biodiesel production from Jatropha caucus oil in a batch reactor using zinc oxide as catalyst,” Journal of Petroleum Technology and Alternative Fuels, vol. 2, no. 9, pp. 146–149, 2011. View at Google Scholar
  20. N. Arun, M. Sampath, S. Siddharth, and R. A. Prasaanth, “Experimental Studies of base catalyzed transesterification of karanja oil,” Journal of Energy and Environment, vol. 2, no. 2, pp. 351–356, 2011. View at Google Scholar
  21. J. M. Marchetti, V. U. Miguel, and A. F. Errazu, “Possible methods for biodiesel production,” Renewable and Sustainable Energy Reviews", vol. 11, pp. 1300–1311, 2007. View at Google Scholar
  22. D. Y. C. Leung and Y. Guo, “Transesterification of neat and used frying oil: optimization for biodiesel production,” Fuel Processing Technology, vol. 87, no. 10, pp. 883–890, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Guzatto, T. L. De Martini, and D. Samios, “The use of a modified TDSP for biodiesel production from soybean, linseed and waste cooking oil,” Fuel Processing Technology, vol. 92, no. 10, pp. 2082–2088, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Vicente, M. Martınez, and J. Aracil, “Integrated biodiesel production: a comparison of different homogeneous catalysts systems,” Bioresource Technology, vol. 92, pp. 297–305, 2004. View at Google Scholar
  25. Y. G. Wu, Y. Lin, and C. T. Chang, “Combustion characteristics of fatty acid methyl esters derived from recycled cooking oil,” Fuel, vol. 86, pp. 2810–2816, 2007. View at Google Scholar
  26. A. Okullo, A. K. Temu, P. Ogwok, and J. W. Ntalikwa, “The physico-chemical properties of jatropha and castor oils,” International Journal of Renewable Energy Research, vol. 2, no. 1, pp. 47–52, 2012. View at Google Scholar
  27. J. Zhang, S. Chen, R. Yang, and Y. Yan, “Biodiesel production from vegetable oil using heterogenous acid and alkali catalyst,” Fuel, vol. 89, no. 10, pp. 2939–2944, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. P. L. Boeya, S. Ganesana, G. P. Maniamb, and M. Khairuddeana, “Catalysts derived from waste sources in the production of biodiesel using waste cooking oil,” Catalysis Today, vol. 190, pp. 117–121, 2012. View at Google Scholar
  29. N. Taufiqurrahmi, A. R. Mohamed, and S. Bhatia, “Production of biofuel from waste cooking palm oil using Nano crystalline zeolite as catalyst: process optimization studies,” Bioresource Technology, vol. 102, pp. 10686–10694, 2011. View at Google Scholar
  30. S. Zhenga, M. Katesb, M. A. Dubea, and D. D. Mc Lean, “Acid-catalyzed production of biodiesel from waste frying oil,” Biomass and Bioenergy, vol. 30, pp. 267–272, 2006. View at Google Scholar
  31. W. N. N. W. Omar and N. A. S. Amin, “Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst,” Fuel Processing Technology, vol. 92, pp. 2397–2405, 2011. View at Google Scholar
  32. G. Perez, Analysis of enzymatic alcoholic reaction with vegetables oils [M.S. thesis], 2003.
  33. A. Kumari, P. Mahapatra, V. K. Garlapati, and R. Banerjee, “Enzymatic transesterification of Jatropha oil,” Biotechnology for Biofuels, vol. 2, article 1, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. R. MacEiras, A. Cancela, M. Vega, and M. C. Márquez, “Enzymatic alholysis for biodiesel production from waste cooking oil,” in Chemical Engineering Transactions, vol. 19, pp. 103–107.
  35. M. Iso, B. Chen, M. Eguchi, T. Kudo, and S. Shrestha, “Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase,” Journal of Molecular Catalysis B, vol. 16, no. 1, pp. 53–58, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Balasubramaniam, A. S. Perumal, J. Jayaraman, J. Mani, and P. Ramanujam, “Comparative analysis for the production of fatty acid alkyl esterase using whole cell biocatalyst and purified enzyme from Rhizopus oryzae on waste cooking oil (sunflower oil),” Waste Management, vol. 32, pp. 1539–1547, 2012. View at Google Scholar
  37. F. Yagiz, D. Kazan, and A. N. Akin, “Biodiesel production from waste oils by using lipase immobilized on hydrotalcite and zeolites,” Chemical Engineering Journal, vol. 134, no. 1–3, pp. 262–267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. M. G. Devanesan, T. Viruthagiri, and N. Sugumar, “Transesterification of Jatropha oil using immobilized Pseudomonas fluorescens,” African Journal of Biotechnology, vol. 6, no. 21, pp. 2497–2501, 2007. View at Google Scholar · View at Scopus
  39. M. I. Al-Widyan and A. O. Al-Shyoukh, “Experimental evaluation of the transesterification of waste palm oil into biodiesel,” Bioresource Technology, vol. 85, no. 3, pp. 253–256, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Cvengroš and Z. Cvengrošová, “Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids,” Biomass and Bioenergy, vol. 27, no. 2, pp. 173–181, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Felizardo, M. J. Neiva Correia, I. Raposo, J. F. Mendes, R. Berkemeier, and J. M. Bordado, “Production of biodiesel from waste frying oils,” Waste Management, vol. 26, no. 5, pp. 487–494, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Wang, S. O. Pengzhan Liu, and Z. Zhang, “Preparation of biodiesel from waste cooking oil via two-step catalyzed process,” Energy Conversion and Management, vol. 48, no. 1, pp. 184–188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. A. A. Refaat, N. K. Attia, H. A. Sibak, S. T. El Sheltawy, and G. I. ElDiwani, “Production optimization and quality assessment of biodiesel from waste vegetable oil,” International Journal of Environmental Science and Technology, vol. 5, no. 1, pp. 75–82, 2008. View at Google Scholar · View at Scopus
  44. A. B. Chhetri, K. C. Watts, and M. R. Islam, “Waste cooking oil as an alternate feedstock for biodiesel production,” Energies, vol. 1, no. 1, pp. 3–18, 2008. View at Publisher · View at Google Scholar
  45. A. B. M. S. Hossain, B. A. Nasrulhaq, A. Salleh, and S. Chandran, “Biodiesel production from waste soybean oil biomass as renewable energy and environmental recycled process,” African Journal of Biotechnology, vol. 9, no. 27, pp. 4233–4240, 2010. View at Google Scholar · View at Scopus
  46. A. B. M. S. Hossain, A. N. Boyce, A. Salleh, and S. Chandran, “Impacts of alcohol type, ratio and stirring time on the biodiesel production from waste canola oil,” African Journal of Agricultural Research, vol. 5, no. 14, pp. 1851–1859, 2010. View at Google Scholar · View at Scopus
  47. W. N. N. Wan Omar and N. A. Saidina Amin, “Optimization of heterogeneous biodiesel production from waste cooking palm oil via response surface methodology,” Biomass and Bioenergy, vol. 35, no. 3, pp. 1329–1338, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Gan, H. K. Ng, P. H. Chan, and F. L. Leong, “Heterogeneous free fatty acids esterification in waste cooking oil using ion-exchange resins,” Fuel Processing Technology, vol. 102, pp. 67–72, 2012. View at Google Scholar
  49. E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, and J. G. Goodwin, “Synthesis of biodiesel via acid catalysis,” Industrial and Engineering Chemistry Research, vol. 44, no. 14, pp. 5353–5363, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Ahmad, S. Rashid, M. A. Khan, M. Zafar, S. Sultana, and S. Gulzar, “Optimization of base catalyzed transesterification of peanut oil biodiesel,” African Journal of Biotechnology, vol. 8, no. 3, pp. 441–446, 2009. View at Google Scholar · View at Scopus
  51. M. Ahmad, S. Ahmed, F. U. Hassan et al., “Base catalyzed transesterification of sunflower oil biodiesel,” African Journal of Biotechnology, vol. 9, no. 50, pp. 8630–8635, 2010. View at Google Scholar · View at Scopus
  52. S. Shah, S. Sharma, and M. N. Gupta, “Enzymatic transesterification for biodiesel production,” Indian Journal of Biochemistry and Biophysics, vol. 40, no. 6, pp. 392–399, 2003. View at Google Scholar · View at Scopus
  53. S. T. Jiang, F. J. Zhang, and L. J. Pan, “Sodium phosphate as a solid catalystfor biodiesel preparation,” Brazilian Journal of Chemical Engineering, vol. 27, no. 1, pp. 137–144, 2010. View at Google Scholar · View at Scopus
  54. S. A. El Sherbiny, A. A. Refaat, and S. T. El Sheltawy, “Production of biodiesel using the microwave technique,” Journal of Advanced Research, vol. 1, no. 4, pp. 309–314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Van Gerpen, “Biodiesel processing and production,” Fuel Processing Technology, vol. 86, no. 10, pp. 1097–1107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Knothe and K. R. Steidley, “A comparison of used cooking oils: a very heterogeneous feedstock for biodiesel,” Bioresource Technology, vol. 100, no. 23, pp. 5796–5801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Muthu, V. S. Selvabala, T. K. Varathachary, D. K. Selvaraj, J. Nandagopal, and S. Subramanian, “Synthesis of biodiesel from neem oil using sulfated zirconia via tranesterification,” Brazilian Journal of Chemical Engineering, vol. 27, no. 4, pp. 601–608, 2010. View at Google Scholar · View at Scopus
  58. M. Mathiyazhagan, A. Ganapathi, B. Jaganath, N. Renganayaki, and N. Sasireka, “Production of biodiesel from non-edible plant oils having high FFA content,” International Journal of Chemical and Environmental Engineering, vol. 2, no. 2, pp. 119–122, 2011. View at Google Scholar
  59. L. Chen, P. Yin, X. Liu et al., “Biodiesel production over copper vanadium phosphate,” Energy, vol. 36, no. 1, pp. 175–180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Royon, M. Daz, G. Ellenrieder, and S. Locatelli, “Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent,” Bioresource Technology, vol. 98, no. 3, pp. 648–653, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Noshadi, N. A. S. Amin, and R. S. Parnas, “Continuous production of biodiesel from waste cooking oil in a reactive distillation column catalyzed by solid heteropolyacid: optimization using response surface methodology (RSM),” Fuel, vol. 94, pp. 156–164, 2012. View at Google Scholar
  62. B. Freedman, R. Butterfield, and E. Pryde, “Transesterification kinetics of soybean oil,” Journal of the American Oil Chemists' Society, vol. 63, no. 10, pp. 1375–1380, 1986. View at Google Scholar
  63. B. Freedman, E. H. Pryde, and T. L. Mounts, “Variables affecting the yields of fatty esters from transesterified vegetable oils,” Journal of the American Oil Chemists' Society, vol. 61, no. 10, pp. 1638–1643, 1984. View at Google Scholar
  64. S. Li, Y. Wang, S. Dong et al., “Biodiesel production from Eruca Sativa Gars vegetable oil and motor, emissions properties,” Renewable Energy, vol. 34, no. 7, pp. 1871–1876, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. K. T. Tan, K. T. Lee, and A. R. Mohamed, “Potential of waste palm cooking oil for catalyst-free biodiesel production,” Energy, vol. 36, no. 4, pp. 2085–2088, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. A. T. Kiakalaieh, N. A. S. Amin, A. Zarei, and I. Noshadi, “Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: optimization and kinetic model,” Applied Energy, vol. 102, pp. 283–292, 2013. View at Google Scholar
  67. A. M. Dehkordi and M. Ghasem, “Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts,” Fuel Processing Technology, vol. 97, pp. 45–51, 2012. View at Google Scholar
  68. M. Canakci and J. Van Gerpen, “A pilot plant to produce biodiesel from high free fatty acid feedstocks,” Transactions of the American Society of Agricultural Engineers, vol. 46, no. 4, pp. 945–954, 2003. View at Google Scholar · View at Scopus
  69. N. A. Adeyemi, A. Mohiuddin, and T. Jameel, “Waste cooking oil transesterification: influence of impeller type, temperature, speed and bottom clearance on FAME yield,” African Journal of Biotechnology, vol. 10, no. 44, pp. 8914–8929, 2011. View at Google Scholar
  70. A. Sivasamy, K. Y. Cheah, P. Fornasiero, F. Kemausuor, S. Zinoviev, and S. Miertus, “Catalytic applications in the production of biodiesel from vegetable oils,” ChemSusChem, vol. 2, no. 4, pp. 278–300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Zhang, M. A. Dubé, D. D. McLean, and M. Kates, “Biodiesel production from waste cooking oil.1: process design and technological assessment,” Bioresource Technology, vol. 89, no. 1, pp. 1–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Darnoko and M. Cheryan, “Kinetics of palm oil transesterification in a batch reactor,” Journal of the American Oil Chemists' Society, vol. 77, no. 12, pp. 1263–1267, 2000. View at Google Scholar · View at Scopus
  73. K. Kapilakarn and A. Peugtong, “A comparison of costs of biodiesel production from transesterication,” International Energy Journal, vol. 8, no. 1, pp. 1–6, 2007. View at Google Scholar · View at Scopus
  74. J. M. Dias, C. A. Ferraz, and M. F. Almeida, “Using mixtures of waste frying oil and pork lard to produce biodiesel,” World Academy of Science, Engineering and Technology, vol. 44, 2008. View at Google Scholar
  75. K. S. Chen, Y. C. Lin, K. H. Hsu, and H. K. Wang, “Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system,” Energy, vol. 38, pp. 151–156, 2012. View at Google Scholar
  76. A. A. Refaat, “Different techniques for the production of biodiesel from waste vegetable oil,” International Journal of Environmental Science and Technology, vol. 7, no. 1, pp. 183–213, 2010. View at Google Scholar