Table of Contents Author Guidelines Submit a Manuscript
Journal of Environmental and Public Health
Volume 2009, Article ID 149034, 6 pages
http://dx.doi.org/10.1155/2009/149034
Research Article

Preliminary Feasibility Study of Benzo(a)Pyrene Oxidative Degradation by Fenton Treatment

LEPÆ, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Received 16 May 2009; Accepted 20 July 2009

Academic Editor: Ivo Iavicoli

Copyright © 2009 Vera Homem et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Liu, Y. Hashi, and J.-M. Lin, “Continuous-flow microextraction and gas chromatographic-mass spectrometric determination of polycyclic aromatic hydrocarbon compounds in water,” Analytica Chimica Acta, vol. 585, no. 2, pp. 294–299, 2007. View at Publisher · View at Google Scholar
  2. N. Ratola, S. Lacorte, D. Barceló, and A. Alves, “Microwave-assisted extraction and ultrasonic extraction to determine polycyclic aromatic hydrocarbons in needles and bark of Pinus pinaster Ait. and Pinus pinea L. by GC-MS,” Talanta, vol. 77, no. 3, pp. 1120–1128, 2009. View at Publisher · View at Google Scholar
  3. S. K. Samanta, O. V. Singh, and R. K. Jain, “Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation,” Trends in Biotechnology, vol. 20, no. 6, pp. 243–248, 2002. View at Publisher · View at Google Scholar
  4. N. Nadarajah, J. Van Hamme, J. Pannu, and A. Singh, “Enhanced transformation of polycyclic aromatic hydrocarbons using a combined Fenton's reagent, microbial treatment and surfactants,” Applied Microbiology and Biotechnology, vol. 59, no. 4-5, pp. 540–544, 2002. View at Publisher · View at Google Scholar
  5. J. H. Sun, G. L. Wang, Y. Chai, G. Zhang, J. Li, and J. Feng, “Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China,” Ecotoxicology and Environmental Safety, vol. 72, no. 5, pp. 1614–1624, 2008. View at Publisher · View at Google Scholar
  6. L. Li-Bin, L. Yan, L. Jin-Ming, T. Ning, H. Kazuichi, and M. Tsuneaki, “Development of analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates: a review,” Journal of Environmental Science and Health, vol. 19, pp. 1–11, 2007. View at Google Scholar
  7. X. Luo, B. Mai, Q. Yang, J. Fu, G. Sheng, and Z. Wang, “Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China,” Marine Pollution Bulletin, vol. 48, pp. 1102–1115, 2004. View at Google Scholar
  8. European Union, “Directive 2000/60/EC of the European Parliament and of the Council,” Official Journal of European Union, vol. L327, pp. 1–72, 2000. View at Google Scholar
  9. European Union, “Decision 2455/2001/EC of the European Parliament and of the Council,” Official Journal of European Union, vol. L331, pp. 1–5, 2001. View at Google Scholar
  10. US Environmental Protection Agency (EPA), “Code of Federal Regulations,” 40 CFR 423, Appendix A, 1982.
  11. A. Valero-Navarro, J. F. Fernández-Sánchez, A. L. Medina-Castillo et al., “A rapid, sensitive screening test for polycyclic aromatic hydrocarbons applied to Antarctic water,” Chemosphere, vol. 67, no. 5, pp. 903–910, 2007. View at Publisher · View at Google Scholar
  12. E. Manoli and C. Samara, “Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis,” Trends in Analytical Chemistry, vol. 18, no. 6, pp. 417–428, 1999. View at Publisher · View at Google Scholar
  13. European Union, “Council Directive 98/83/EC,” Official Journal of European Union, vol. L330, pp. 32–54, 1998. View at Google Scholar
  14. Commission of the European Communities, “Proposal for the Directive of the European Parliament and of the Council on environmental quality standards in the field of water policy and amending Directive 2000/60/EC,” COM 397, 2006.
  15. B.-D. Lee, M. Iso, and M. Hosomi, “Prediction of Fenton oxidation positions in polycyclic aromatic hydrocarbons by Frontier electron density,” Chemosphere, vol. 42, no. 4, pp. 431–435, 2001. View at Publisher · View at Google Scholar
  16. V. Flotron, C. Delteil, Y. Padellec, and V. Camel, “Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton's reagent process,” Chemosphere, vol. 59, no. 10, pp. 1427–1437, 2005. View at Publisher · View at Google Scholar
  17. R. Oliveira, M. F. Almeida, L. Santos, and L. M. Madeira, “Experimental design of 2,4-dichlorophenol oxidation by Fenton's reaction,” Industrial and Engineering Chemistry Research, vol. 45, no. 4, pp. 1266–1276, 2006. View at Publisher · View at Google Scholar
  18. H. Lee and M. Shoda, “Removal of COD and color from livestock wastewater by the Fenton method,” Journal of Hazardous Materials, vol. 153, no. 3, pp. 1314–1319, 2008. View at Publisher · View at Google Scholar
  19. S. Wang, “A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater,” Dyes and Pigments, vol. 76, no. 3, pp. 714–720, 2008. View at Publisher · View at Google Scholar
  20. F. J. Beltrán, M. González, F. J. Rivas, and P. Alvarez, “Fenton reagent advanced oxidation of polynuclear aromatic hydrocarbons in water,” Water, Air, and Soil Pollution, vol. 105, no. 3-4, pp. 685–700, 1998. View at Publisher · View at Google Scholar
  21. P. T. S. Silva, V. L. Silva, B. B. Neto, and M.-O. Simonnot, “Phenanthrene and pyrene oxidation in contaminated soils using Fenton's reagent,” Journal of Hazardous Materials, vol. 161, no. 2-3, pp. 967–973, 2009. View at Publisher · View at Google Scholar
  22. B. Chen, X. Xuan, L. Zhu et al., “Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China,” Water Research, vol. 38, no. 16, pp. 3558–3568, 2004. View at Publisher · View at Google Scholar
  23. H. Wischmann and H. Steinhart, “The formation of PAH oxidation products in soils and soil/compost mixtures,” Chemosphere, vol. 35, no. 8, pp. 1681–1698, 1997. View at Publisher · View at Google Scholar
  24. B.-D. Lee, M. Hosomi, and A. Murakami, “Fenton oxidation with ethanol to degrade anthracene into biodegradable 9, 10-anthraquinon: a pretreatment method for anthracene-contaminated soil,” Water Science and Technology, vol. 38, no. 7, pp. 91–97, 1998. View at Publisher · View at Google Scholar
  25. B. D. Lee and M. Hosomi, “A hybrid Fenton oxidation-microbial treatment for soil highly contaminated with benz(a)anthracene,” Chemosphere, vol. 43, pp. 1127–1132, 2001. View at Google Scholar
  26. S. Lundstedt, P. A. White, C. L. Lemieux et al., “Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites,” Ambio, vol. 36, pp. 475–485, 2007. View at Google Scholar
  27. B.-D. Lee and M. Hosomi, “Ethanol washing of PAH-contaminated soil and Fenton oxidation of washing solution,” Journal of Material Cycles and Waste Management, vol. 30, pp. 2–24, 2000. View at Google Scholar
  28. S. L. R. Ellisson, M. Rosslein, and A. Williams, EURACHEM/CITAC Guide, Quantifying Uncertainty in Analytical Measurement, Teddington, UK, 2nd edition, 2000.
  29. J. H. Ramirez, C. A. Costa, L. M. Madeira et al., “Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay,” Applied Catalysis B, vol. 71, no. 1-2, pp. 44–56, 2007. View at Publisher · View at Google Scholar