Table of Contents Author Guidelines Submit a Manuscript
Journal of Environmental and Public Health
Volume 2013, Article ID 256151, 4 pages
http://dx.doi.org/10.1155/2013/256151
Research Article

Impact of Blood Sample Collection and Processing Methods on Glucose Levels in Community Outreach Studies

1Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
2Department of Pediatrics, New York University School of Medicine, New York, NY 10016, USA
3Department of Pathology and Medicine, New York University School of Medicine, New York, NY 10016, USA
4Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
5Brain, Obesity, and Diabetes Laboratory (BODyLab), New York University School of Medicine, 145 East 32nd Street, 8th Floor, New York, NY 10016, USA

Received 11 October 2012; Accepted 20 December 2012

Academic Editor: Linda M. Gerber

Copyright © 2013 Michael Turchiano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Cook, P. Auinger, C. Li, and E. S. Ford, “Metabolic syndrome rates in United States adolescents, from the national health and nutrition examination survey, 1999–2002,” Journal of Pediatrics, vol. 152, no. 2, pp. 165.e2–170.e2, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Li, E. S. Ford, G. Zhao, and A. H. Mokdad, “Prevalence of pre-diabetes and its association with clustering of cardiometabolic risk factors and hyperinsulinemia among U.S. adolescents: national health and nutrition examination survey 2005-2006,” Diabetes Care, vol. 32, no. 2, pp. 342–347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. D. E. Bruns and W. C. Knowler, “Stabilization of glucose in blood samples: why it matters,” Clinical Chemistry, vol. 55, no. 5, pp. 850–852, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. L. M. Mikesh and D. E. Bruns, “Stabilization of glucose in blood specimens: mechanism of delay in fluoride inhibition of glycolysis,” Clinical Chemistry, vol. 54, no. 5, pp. 930–932, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Narayanan, “The preanalytic phase: an important component of laboratory medicine,” American Journal of Clinical Pathology, vol. 113, no. 3, pp. 429–452, 2000. View at Google Scholar · View at Scopus
  6. D. B. Sacks, M. Arnold, G. L. Bakris et al., “Executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Clinical Chemistry, vol. 57, no. 6, pp. 793–798, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Y. W. Chan, R. Swaminathan, and C. S. Cockram, “Effectiveness of sodium fluoride as a preservative of glucose in blood,” Clinical Chemistry, vol. 35, no. 2, pp. 315–317, 1989. View at Google Scholar · View at Scopus
  8. R. Gambino, J. Piscitelli, T. A. Ackattupathil et al., “Acidification of blood is superior to sodium fluoride alone as an inhibitor of glycolysis,” Clinical Chemistry, vol. 55, no. 5, pp. 1019–1021, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. E. S. Ford, C. Li, S. Cook, and H. K. Choi, “Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents,” Circulation, vol. 115, no. 19, pp. 2526–2532, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Lee, M. J. Okumura, M. M. Davis, W. H. Herman, and J. G. Gurney, “Prevalence and determinants of insulin resistance among U.S. adolescents: a population-based study,” Diabetes Care, vol. 29, no. 11, pp. 2427–2432, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Wahrenberg, K. Hertel, B. M. Leijonhufvud, L. G. Persson, E. Toft, and P. Arner, “Use of waist circumference to predict insulin resistance: retrospective study,” British Medical Journal, vol. 330, no. 7504, pp. 1363–1364, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Sweat, J. M. Bruzzese, S. Albert, D. J. Pinero, A. Fierman, and A. Convit, “The Banishing Obesity and Diabetes in Youth (BODY) project: description and feasibility of a program to halt obesity-associated disease among urban high school students,” Journal of Community Health, vol. 37, no. 2, pp. 365–371, 2012. View at Google Scholar · View at Scopus
  13. D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher, and R. C. Turner, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Google Scholar · View at Scopus
  14. M. Turchiano, V. Sweat, A. Fierman, and A. Convit, “Obesity, metabolic syndrome, and insulin resistance in Urban high school students of minority race/ethnicity,” Archives of Pediatrics & Adolescent Medicine, vol. 166, no. 11, pp. 1030–1036, 2012. View at Publisher · View at Google Scholar
  15. W. S. Waring, L. E. Evans, and C. T. Kirkpatrick, “Glycolysis inhibitors negatively bias blood glucose measurements: potential impact on the reported prevalence of diabetes mellitus,” Journal of Clinical Pathology, vol. 60, no. 7, pp. 820–823, 2007. View at Publisher · View at Google Scholar · View at Scopus