Table of Contents Author Guidelines Submit a Manuscript
Journal of Environmental and Public Health
Volume 2013, Article ID 504705, 6 pages
http://dx.doi.org/10.1155/2013/504705
Research Article

Nitrogen Removal in a Full-Scale Domestic Wastewater Treatment Plant with Activated Sludge and Trickling Filter

1Tehran Sewerage Company, Tehran 15688, Iran
2Environment Research Center, School of Health, Isfahan University of Medical Sciences, Isfahan 8613846191, Iran

Received 13 November 2012; Revised 27 February 2013; Accepted 13 March 2013

Academic Editor: Mohammad Mehdi Amin

Copyright © 2013 Davood Nourmohammadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Islam, N. George, J. Zhu, and N. Chowdhury, “Impact of carbon to nitrogen ratio on nutrient removal in a liquid-solid circulating fluidized bed bioreactor (LSCFB),” Process Biochemistry, vol. 44, no. 5, pp. 578–583, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Stare, D. Vrečko, N. Hvala, and S. Strmčnik, “Comparison of control strategies for nitrogen removal in an activated sludge process in terms of operating costs: a simulation study,” Water Research, vol. 41, no. 9, pp. 2004–2014, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Jeyanayagam, “True confessions of the biological nutrient removal process,” Florida Water Resources Journal, pp. 37–46, 2005. View at Google Scholar
  4. T. Datta, L. Racz, S. M. Kotay, and R. Goel, “Seasonal variations of nitrifying community in trickling filter-solids contact (TF/SC) activated sludge systems,” Bioresource Technology, vol. 102, no. 3, pp. 2272–2279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Clifford, M. Nielsen, K. Sørensen, and M. Rodgers, “Nitrogen dynamics and removal in a horizontal flow biofilm reactor for wastewater treatment,” Water Research, vol. 44, no. 13, pp. 3819–3828, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. V. C. Machado, D. Gabriel, J. Lafuente, and J. A. Baeza, “Cost and effluent quality controllers design based on the relative gain array for a nutrient removal WWTP,” Water Research, vol. 43, no. 20, pp. 5129–5141, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. M. Kim, H. U. Cho, D. S. Lee, D. Park, and J. M. Park, “Influence of operational parameters on nitrogen removal efficiency and microbial communities in a full-scale activated sludge process,” Water Research, vol. 45, no. 17, pp. 5785–5795, 2011. View at Publisher · View at Google Scholar
  8. S. Aiyuk, J. Amoako, L. Raskin, A. Van Haandel, and W. Verstraete, “Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept,” Water Research, vol. 38, no. 13, pp. 3031–3042, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. EPA, Biological Nutrient Removal Processes and Costs, Washington, DC, USA, 2007.
  10. Z. Magdalena, B. Katarzyna, and C. Agnieszka, “Nitrogen removal from wastewater and bacterial diversity in activated sludge at different COD/N ratios and dissolved oxygen concentrations,” Environmental Biotechnology, pp. 10–70, 2011. View at Google Scholar
  11. G. Tchobanoglous and F. Burton, Wastewater Engineering: Treatment and Reuse. Metcalf and Eddy, McGraw-Hill, New York, NY, USA, 4th edition, 2003.
  12. L. Larrea, A. Larrea, E. Ayesa, J. C. Rodrigo, M. D. Lopez-Carrasco, and J. A. Cortacans, “Development and verification of design and operation criteria for the step feed process with nitrogen removal,” Water Science and Technology, vol. 43, no. 1, pp. 261–268, 2001. View at Google Scholar · View at Scopus
  13. A. Lesouef, M. Payraudeau, F. Rogalla, and B. Kleiber, “Optimizing nitrogen removal reactor configurations by onsite calibration of the IAWPRC activated sludge model,” Water Science and Technology, vol. 25, no. 6, pp. 105–123, 1992. View at Google Scholar · View at Scopus
  14. E. Görgün, N. Artan, D. Orhon, and S. Sözen, “Evaluation of nitrogen removal by step feeding in large treatment plants,” Water Science and Technology, vol. 34, no. 1-2, pp. 253–260, 1996. View at Publisher · View at Google Scholar
  15. S. Schlegel, “Operational results of waste water treatment plants with biological N and P elimination,” Water Science and Technology, vol. 25, no. 4-5, pp. 241–247, 1992. View at Google Scholar
  16. APHA, AWWA, and WEF, Standard Methods for the Examination of Water and Wastewater, 21th edition, 2005.
  17. A. Albuquerque, J. Makinia, and K. Pagilla, “Impact of aeration conditions on the removal of low concentrations of nitrogen in a tertiary partially aerated biological filter,” Ecological Engineering, vol. 44, pp. 44–52, 2012. View at Publisher · View at Google Scholar
  18. H. D. Ryu, D. Kim, H. E. Lim, and S. I. Lee, “Nitrogen removal from low carbon-to-nitrogen wastewater in four-stage biological aerated filter system,” Process Biochemistry, vol. 43, no. 7, pp. 729–735, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. E. A. Evans, G. Timothy, M. Ellis, H. Gullicks, and J. Ringelestein, “Trickling filter nitrification performance characteristics and potential of a full-scale municipal wastewater treatment facility,” Journal of Environmental Engineering, vol. 130, no. 11, pp. 1280–1288, 2004. View at Google Scholar
  20. C. C. Wang, P. H. Leeb, M. Kumara, Y. T. Huangc, Sungb Sh, and J. G. Lina, “Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant,” Journal of Hazardous Materials, vol. 175, pp. 622–628, 2010. View at Google Scholar