Table of Contents Author Guidelines Submit a Manuscript
Journal of Environmental and Public Health
Volume 2014, Article ID 573607, 6 pages
http://dx.doi.org/10.1155/2014/573607
Research Article

PFAAs in Fish and Other Seafood Products from Icelandic Waters

1Matis, Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavik, Iceland
2Faculty of Food Science & Nutrition, School of Health Science, University of Iceland, Unit of Nutritional Research, Eiríksgötu 29, 101 Reykjavik, Iceland

Received 3 December 2013; Revised 19 February 2014; Accepted 19 February 2014; Published 20 March 2014

Academic Editor: Pam R. Factor-Litvak

Copyright © 2014 Hrönn Jörundsdóttir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Butt, U. Berger, R. Bossi, and G. T. Tomy, “Levels and trends of poly- and perfluorinated compounds in the arctic environment,” Science of the Total Environment, vol. 408, no. 15, pp. 2936–2965, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. K.-U. Goss and G. Bronner, “What is so special about the sorption behavior of highly fluorinated compounds?” Journal of Physical Chemistry A, vol. 110, no. 30, pp. 9518–9522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. 3M, “Phase-out plan for PFOS-based products,” 2000.
  4. D. A. Ellis, J. W. Martin, A. O. De Silva et al., “Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids,” Environmental Science and Technology, vol. 38, no. 12, pp. 3316–3321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. R. C. Buck, J. Franklin, U. Berger et al., “Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins,” Integrated Environmental Assessment and Management, vol. 7, no. 4, pp. 513–541, 2011. View at Google Scholar · View at Scopus
  6. T. C. Lim, B. Wang, J. Huang, S. Deng, and G. Yu, “Emission inventory for PFOS in China: review of past methodologies and suggestions,” TheScientificWorldJournal, vol. 11, pp. 1963–1980, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Conder, R. A. Hoke, W. De Wolf, M. H. Russell, and R. C. Buck, “Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds,” Environmental Science and Technology, vol. 42, no. 4, pp. 995–1003, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. C. M. Butt, D. C. G. Muir, I. Stirling, M. Kwan, and S. A. Mabury, “Rapid response of arctic ringed seals to changes in perfluoroalkyl production,” Environmental Science and Technology, vol. 41, no. 1, pp. 42–49, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Dietz, R. Bossi, F. F. Rigét, C. Sonne, and E. W. Born, “Increasing perfluoroalkyl contaminants in East Greenland polar bears (Ursus maritimus): a new toxic threat to the arctic bears,” Environmental Science and Technology, vol. 42, no. 7, pp. 2701–2707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. W. D'Hollander, P. De Voogt, W. De Coen, and L. Bervoets, “Perfluorinated substances in human food and other sources of human exposure,” Reviews of Environmental Contamination ands Toxicology, vol. 208, pp. 179–215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Kantiani, M. Llorca, J. Sanchís, M. Farré, and D. Varceló, “Emerging food contaminants: a review,” Analytical and Bioanalytical Chemistry, vol. 398, pp. 2413–2426, 2010. View at Google Scholar
  12. D. Trudel, L. Horowitz, M. Wormuth, M. Scheringer, I. T. Cousins, and K. Hungerbühler, “Estimating consumer exposure to PFOS and PFOA,” Risk Analysis, vol. 28, no. 2, pp. 251–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. G. B. Post, P. D. Cohn, and K. R. Cooper, “Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature,” Environmental Research, vol. 116, pp. 93–117, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. U. Berger, A. Glynn, K. E. Holmström, M. Berglund, E. H. Ankarberg, and A. Törnkvist, “Fish consumption as a source of human exposure to perfluorinated alkyl substances in Sweden: analysis of edible fish from Lake Vättern and the Baltic Sea,” Chemosphere, vol. 76, no. 6, pp. 799–804, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Guerranti, G. Perra, S. Corsolini, and S. E. Focardi, “Pilot study on levels of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in selected foodstuff and human milk from Italy,” Food Chemistry, vol. 140, no. 1-2, pp. 197–203, 2013. View at Google Scholar
  16. U. Eriksson, A. Karrman, A. Rotander, B. Mikkelsen, and M. Dam, “Perfluoroalkyl substances (PFASs) in food and water from Faroe Islands,” Environmental Science and Pollution Research, vol. 20, pp. 7940–7948, 2013. View at Google Scholar
  17. EFSA, “Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts: scientific opinion of the panel on contaminants in the food chain.,” The EFSA Journal, vol. 653, pp. 1–131, 2008. View at Google Scholar
  18. J. W. Martin, S. A. Mabury, K. R. Solomon, and D. C. G. Muir, “Dietary accumulation of perfluorinated acids in juvenile rainbow trout (Oncorhynchus mykiss),” Environmental Toxicology and Chemistry, vol. 22, no. 1, pp. 189–195, 2003. View at Google Scholar · View at Scopus
  19. J. W. Martin, S. A. Mabury, K. R. Solomon, and D. C. G. Muir, “Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss),” Environmental Toxicology and Chemistry, vol. 22, no. 1, pp. 196–204, 2003. View at Google Scholar · View at Scopus
  20. C. E. Müller, A. O. De Silva, J. Small et al., “Biomagnification of perfluorinated compounds in a remote terrestrial food chain: Lichen-Caribou-Wolf,” Environmental Science and Technology, vol. 45, no. 20, pp. 8665–8673, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Löfstrand, H. Jörundsdóttir, G. Tomy et al., “Spatial trends of polyfluorinated compounds in guillemot (Uria aalge) eggs from North-Western Europe,” Chemosphere, vol. 72, no. 10, pp. 1475–1480, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Kallenborn, U. Berger, U. Järnberg et al., Perfluorinated Alkylated Substances (PFAS) in the Nordic Environment, Nordisk Ministerråd, Copenhagen, Denmark, 2004.
  23. AOCS-Ba-3-38, “Application noteTecator no. AN 301,” 1997.
  24. Y. Shi, J. Wang, Y. Pan, and Y. Cai, “Tissue distribution of perfluorinated compounds in farmed freshwater fish and human exposure by consumption,” Environmental Toxicology and Chemistry, vol. 31, no. 4, pp. 717–723, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Haukås, U. Berger, H. Hop, B. Gulliksen, and G. W. Gabrielsen, “Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web,” Environmental Pollution, vol. 148, no. 1, pp. 360–371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. C. R. Powley, S. W. George, M. H. Russell, R. A. Hoke, and R. C. Buck, “Polyfluorinated chemicals in a spatially and temporally integrated food web in the Western Arctic,” Chemosphere, vol. 70, no. 4, pp. 664–672, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. S. Mortensen, R. J. Letcher, M. V. Cangialosi, S. Chu, and A. Arukwe, “Tissue bioaccumulation patterns, xenobiotic biotransformation and steroid hormone levels in Atlantic salmon (Salmo salar) fed a diet containing perfluoroactane sulfonic or perfluorooctane carboxylic acids,” Chemosphere, vol. 83, no. 8, pp. 1035–1044, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. K. E. Holmström and U. Berger, “Tissue distribution of perfluorinated surfactants in common guillemot (Uria aalge) from the Baltic Sea,” Environmental Science and Technology, vol. 42, no. 16, pp. 5879–5884, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Murakami, N. Adachi, M. Saha, C. Morita, and H. Takada, “Levels, temporal trends, and tissue distribution of perfluorinated surfactants in freshwater fish from Asian countries,” Archives of Environmental Contamination and Toxicology, vol. 61, no. 4, pp. 631–641, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. EFSA, “Results of the monitoring of perfluoroalkylated substances in food in the period 2000–2009,” The EFSA Journal, vol. 9, no. 2, pp. 1–34, 2011. View at Google Scholar
  31. O. Reykdal, S. Rabieh, L. Steingrimsdottir, and H. Gunnlaugsdottir, “Minerals and trace elements in Icelandic dairy products and meat,” Journal of Food Composition and Analysis, vol. 24, no. 7, pp. 980–986, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. O. Reykdal, O. T. Hilmarsson, and G. A. Audunsson, “Joð, selen og kvikasilfur í kjöti, mjólk og eggjum,” 06:03, MATRA, Reykjavík, Iceland, 2006.