Research Article | Open Access
Frank J. Jacono, Michael A. De Georgia, Christopher G. Wilson, Thomas E. Dick, Kenneth A. Loparo, "Data Acquisition and Complex Systems Analysis in Critical Care: Developing the Intensive Care Unit of the Future", Journal of Healthcare Engineering, vol. 1, Article ID 478492, 19 pages, 2010. https://doi.org/10.1260/2040-2295.1.3.337
Data Acquisition and Complex Systems Analysis in Critical Care: Developing the Intensive Care Unit of the Future
Abstract
Modern hospitals are equipped with sophisticated monitoring equipment that displays enormous volumes of raw data about the cardiopulmonary and neural functions of patients. The latest generation of bedside monitors attempts to present these data to the clinician in an integrated fashion to better represent the overall physiological condition of the patient. However, none of these systems are capable of extracting potentially important indices of pattern variability inherent within biological signals. This review has three main objectives. (1) To summarize the current state of data acquisition in the intensive care unit and identify limitations that must be overcome to achieve the goal of real-time processing of biological signals to capture subtleties identifying “early warning signals” hidden in physiologic patterns that may reflect current severity of the disease process and, more importantly, predict the likelihood of adverse progression and death or improvement and resolution. (2) To outline our approach to analyzing biological waveform data based on work in animal models of human disease. (3) To propose guidelines for the development, testing and implementation of integrated software and hardware solutions that will facilitate the novel application of complex systems approaches to biological waveform data with the goal of risk assessment.
References
- J. F. Dasta, T. P. McLaughlin, S. H. Mody, and C. T. Piech, “Daily cost of an intensive care unit day: the contribution of mechanical ventilation,” Crit Care Med, vol. 33, pp. 1266–71, 2005. View at: Google Scholar
- J. E. Zimmerman, D. P. Wagner, E. A. Draper, L. Wright, C. Alzola, and W. A. Knaus, “Evaluation of acute physiology and chronic health evaluation III predictions of hospital mortality in an independent database,” Crit Care Med, vol. 26, pp. 1317–26, 1998. View at: Google Scholar
- A. K. Lwin and D. S. Shepard, Estimating Lives and Dollars Saved from Universal Adoption of the Leapfrog Safety and Quality Standards: 2008 Update, The Leapfrog group, Washington, D.C., 2008.
- M. A. De Georgia and A. Deogaonkar, “Multimodal Monitoring in the Neurological Intensive Care Unit,” The Neurologist, vol. 11, pp. 45–54, 2005. View at: Google Scholar
- S. Ahmad, A. Tejuja, K. D. Newman, R. Zarychanski, and A. J. Seely, “Clinical review: A review and analysis of heart rate variability and the diagnosis and prognosis of infection,” Crit Care, vol. 13, p. 232, 2009. View at: Google Scholar
- T. G. Buchman, “Physiologic stability and physiologic state,” J Trauma, vol. 41, pp. 599–605, 1996. View at: Google Scholar
- B. F. Pados, S. M. Thoyre, B. W. Carlson, and B. Nix, “Heart Rate Variability as an Indicator of Physiologic Stability During Feeding in the Preterm Infant,” Advances in Neonatal Care, vol. 9, pp. 85–6, 2009. View at: Publisher Site | Google Scholar
- J. Askanazi, P. A. Silverberg, A. I. Hyman, S. H. Rosenbaum, R. Foster, and J. M. Kinney, “Patterns of ventilation in postoperative and acutely ill patients,” Crit Care Med, vol. 7, pp. 41–6, 1979. View at: Google Scholar
- J. J. Frassica, “CIS: where are we going and what should we demand from industry?” J Crit Care, vol. 19, pp. 226–33, 2004. View at: Google Scholar
- J. Belair, L. Glass, U. An Der Heiden, and J. Milton, “Dynamical disease: Identification, temporal aspects and treatment strategies of human illness,” Chaos, vol. 5, pp. 1–7, 1995. View at: Google Scholar
- T. G. Buchman, J. P. Cobb, A. S. Lapedes, and T. B. Kepler, “Complex systems analysis: a tool for shock research,” Shock, vol. 16, pp. 248–51, 2001. View at: Google Scholar
- B. Goldstein and T. G. Buchman, “Heart rate variability in intensive care,” J Intensive Care Med, vol. 13, pp. 252–65, 1998. View at: Google Scholar
- B. Goldstein, J. McNames, B. A. McDonald et al., “Physiologic data acquisition system and database for the study of disease dynamics in the intensive care unit,” Crit Care Med, vol. 31, pp. 433–41, 2003. View at: Google Scholar
- R. E. Kleiger, J. P. Miller, J. T. Bigger Jr., and A. J. Moss, “Decreased heart rate variability and its association with increased mortality after acute myocardial infarction,” Am J Cardiol, vol. 59, pp. 256–62, 1987. View at: Google Scholar
- G. J. Martin, N. M. Magid, G. Myers et al., “Heart rate variability and sudden death secondary to coronary artery disease during ambulatory electrocardiographic monitoring,” Am J Cardiol, vol. 60, pp. 86–9, 1987. View at: Google Scholar
- O. Odemuyiwa, M. Malik, T. Farrell, Y. Bashir, J. Poloniecki, and J. Camm, “Comparison of the predictive characteristics of heart rate variability index and left ventricular ejection fraction for all-cause mortality, arrhythmic events and sudden death after acute myocardial infarction,” Am J Cardiol, vol. 68, pp. 434–9, 1991. View at: Google Scholar
- G. Pelosi, M. Emdin, C. Carpeggiani et al., “Impaired sympathetic response before intradialytic hypotension: a study based on spectral analysis of heart rate and pressure variability,” Clin Sci (Lond), vol. 96, pp. 23–31, 1999. View at: Google Scholar
- D. H. Singer, G. J. Martin, N. Magid et al., “Low heart rate variability and sudden cardiac death,” J Electrocardiol, vol. 21, Suppl, pp. S46–55, 1988. View at: Google Scholar
- F. C. Tsui, C. C. Li, M. Sun, and R. J. Sclabassi, “Acquiring, modeling, and predicting intracranial pressure in the intensive care unit,” Biomed Eng Applicat Basis Commun, vol. 8, pp. 566–78, 1996. View at: Google Scholar
- L. Glass and D. Kaplan, “Time series analysis of complex dynamics in physiology and medicine,” Med Prog Technol, vol. 19, pp. 115–28, 1993. View at: Google Scholar
- A. L. Goldberger, “Applications of chaos to physiology and medicine,” in Applied Chaos, J. H. Kim and J. Stringer, Eds., pp. 321–31, Wiley-Interscience, New York, 1992. View at: Google Scholar
- R. L. Craft, “Trends in technology and the future intensive care unit,” Crit Care Med, vol. 29, pp. N151–8, 2001. View at: Google Scholar
- C. W. Hanson, “Ticker tape medicine,” Crit Care Med, vol. 32, pp. 2551–2, 2004. View at: Google Scholar
- M. Imhoff, S. Kuhls, U. Gather, and R. Fried, “Smart alarms from medical devices in the OR and ICU,” Best Pract Res Clin Anaesthesiol, vol. 23, pp. 39–50, 2009. View at: Google Scholar
- A. Wright, D. F. Sittig, J. S. Ash, S. Sharma, J. E. Pang, and B. Middleton, “Clinical decision support capabilities of commercially-available clinical information systems,” J Am Med Inform Assoc, vol. 16, pp. 637–44, 2009. View at: Google Scholar
- B. Hayes-Roth, S. Uckun, J. E. Larsson et al., “Guardian: an experimental system for intelligent ICU monitoring,” in Proc Annu Symp Comput Appl Med Care, p. 1004, 1994. View at: Google Scholar
- M. Dojat, L. Brochard, F. Lemaire, and A. Harf, “A knowledge-based system for assisted ventilation of patients in intensive care units,” Int J Clin Monit Comput, vol. 9, pp. 239–50, 1992. View at: Google Scholar
- S. Ahmad, T. Ramsay, L. Huebsch et al., “Continuous multi-parameter heart rate variability analysis heralds onset of sepsis in adults,” PLoS One, vol. 4, e6642, 2009. View at: Google Scholar
- P. Casaseca-de-la-Higuera, F. Simmross-Wattenberg, M. Martin-Fernandez, and C. Alberola-Lopez, “A multichannel model-based methodology for extubation readiness decision of patients on weaning trials,” IEEE Trans Biomed Eng, vol. 56, pp. 1849–63, 2009. View at: Google Scholar
- A. Burykin and T. G. Buchman, “Cardiorespiratory Dynamics During Transitions Between Mechanical and Spontaneous Ventilation in Intensive Care,” Complexity, vol. 13, pp. 40–59, 2008. View at: Google Scholar
- G. Casolo, E. Balli, T. Taddei, J. Amuhasi, and C. Gori, “Decreased spontaneous heart rate variability in congestive heart failure,” Am J Cardiol, vol. 64, pp. 1162–7, 1989. View at: Google Scholar
- A. L. Goldberger, “Heartbeats, hormones, and health: is variability the spice of life?” Am J Respir Crit Care Med, vol. 163, pp. 1289–90, 2001. View at: Google Scholar
- H. V. Huikuri, T. H. Makikallio, C. K. Peng, A. L. Goldberger, U. Hintze, and M. Moller, “Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction,” Circulation, vol. 101, pp. 47–53, 2000. View at: Google Scholar
- M. Lishner, S. Akselrod, V. M. Avi, O. Oz, M. Divon, and M. Ravid, “Spectral analysis of heart rate fluctuations. A non-invasive, sensitive method for the early diagnosis of autonomic neuropathy in diabetes mellitus,” J Auton Nerv Syst, vol. 19, pp. 119–25, 1987. View at: Google Scholar
- J. E. Mietus, C. Peng, P. C. Ivanov, and A. L. Goldberger, “Detection of obstructive sleep spnea from cardiac interbeat interval time series,” Computers in Cardiology, vol. 27, pp. 753–6, 2000. View at: Google Scholar
- P. K. Stein, P. P. Domitrovich, H. V. Huikuri, and R. E. Kleiger, “Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction,” J Cardiovasc Electrophysiol, vol. 16, pp. 13–20, 2005. View at: Google Scholar
- J. M. Tapanainen, P. E. Thomsen, L. Kober et al., “Fractal analysis of heart rate variability and mortality after an acute myocardial infarction,” Am J Cardiol, vol. 90, pp. 347–52, 2002. View at: Google Scholar
- M. Imhoff and M. Bauer, “Time series analysis in critical care monitoring,” New Horiz, vol. 4, pp. 519–31, 1996. View at: Google Scholar
- W. Massagram, O. Boric-Lubecke, L. Macchiarulo, and M. Chen, “Heart Rate Variability Monitoring and Assessment System on Chip,” in Conf Proc IEEE Eng Med Biol Soc, vol. 7, pp. 7369–72, 2005. View at: Google Scholar
- V. E. Papaioannou, N. Maglaveras, I. Houvarda, E. Antoniadou, and G. Vretzakis, “Investigation of altered heart rate variability, nonlinear properties of heart rate signals, and organ dysfunction longitudinally over time in intensive care unit patients,” J Crit Care, vol. 21, pp. 95–103, discussion -4, 2006. View at: Google Scholar
- A. J. Seely and N. V. Christou, “Multiple organ dysfunction syndrome: exploring the paradigm of complex nonlinear systems,” Crit Care Med, vol. 28, pp. 2193–200, 2000. View at: Google Scholar
- A. J. Seely and P. T. Macklem, “Complex systems and the technology of variability analysis,” Crit Care, vol. 8, pp. R367–84, 2004. View at: Google Scholar
- S. M. Tibby, H. Frndova, A. Durward, and P. N. Cox, “Novel method to quantify loss of heart rate variability in pediatric multiple organ failure,” Crit Care Med, vol. 31, pp. 2059–67, 2003. View at: Google Scholar
- X. Wang, M. Chen, L. Macchiarulo, and O. Boric-Lubecke, “Fully-integrated heart rate variability monitoring system with an efficient memory,” in Conf Proc IEEE Eng Med Biol Soc, vol. 1, pp. 5064–7, 2006. View at: Google Scholar
- F. Capra, The Web of Life: A New Scientific Understanding of Living Systems, Anchor Books, Doubleday, New York, 1996.
- A. L. Goldberger and B. J. West, “Chaos in Physiology: Health or Disease?” in Chaos in biological systems, A. V. H. Hans Degn and Lars F. Olsen, Eds., Springer, 1987. View at: Google Scholar
- B. J. West, Fractal physiology and chaos in medicine, World Scientific, New Jersey, 1990; 1990.
- T. G. Buchman, “Nonlinear dynamics, complex systems, and the pathobiology of critical illness,” Curr Opin Crit Care, vol. 10, pp. 378–82, 2004. View at: Google Scholar
- B. Goldstein, D. H. Fiser, M. M. Kelly, D. Mickelsen, U. Ruttimann, and M. M. Pollack, “Decomplexification in critical illness and injury: relationship between heart rate variability, severity of illness, and outcome,” Crit Care Med, vol. 26, pp. 352–7, 1998. View at: Google Scholar
- M. D. Sorani, J. C. Hemphill 3rd, D. Morabito, G. Rosenthal, and G. T. Manley, “New approaches to physiological informatics in neurocritical care,” Neurocrit Care, vol. 7, pp. 45–52, 2007. View at: Google Scholar
- C. L. Webber Jr., “The meaning and measurement of physiologic variability?” Crit Care Med, vol. 33, pp. 677–8, 2005. View at: Google Scholar
- S. M. Pincus and A. L. Goldberger, “Physiological time-series analysis: what does regularity quantify?” Am J Physiol, vol. 266, pp. H1643–56, 1994. View at: Google Scholar
- J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy,” Am J Physiol Heart Circ Physiol, vol. 278, pp. H2039–49, 2000. View at: Google Scholar
- S. Pincus, “Approximate entropy (ApEn) as a complexity measure,” Chaos, vol. 5, pp. 110–7, 1995. View at: Google Scholar
- F. Kaffshi, R. Foglyano, C. G. Wilson, and K. A. Loparo, “The effect of time delay on Approximate & Sample Entropy calculations,” Physica D: Nonlinear Phenomena, vol. 237, pp. 3069–74, 2008. View at: Google Scholar
- T. Schreiber and A. Schmitz, “Surrogate time series,” Physica D, vol. 142, pp. 346–82, 2000. View at: Google Scholar
- H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press, 2nd edition, 2004.
- P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D, vol. 9, pp. 189–208, 1983. View at: Google Scholar
- Y. Lu, A. Burykin, M. W. Deem, and T. G. Buchman, “Predicting clinical physiology: a Markov chain model of heart rate recovery after spontaneous breathing trials in mechanically ventilated patients,” J Crit Care, vol. 24, pp. 347–61, 2009. View at: Google Scholar
- A. L. Goldberger, L. A. Amaral, J. M. Hausdorff, P. Ivanov, C. K. Peng, and H. E. Stanley, “Fractal dynamics in physiology: alterations with disease and aging,” Proc Natl Acad Sci U S A, vol. 99, Suppl 1, pp. 2466–72, 2002. View at: Google Scholar
- M. Y. Bien, S. S. Hseu, H. W. Yien et al., “Breathing pattern variability: a weaning predictor in postoperative patients recovering from systemic inflammatory response syndrome,” Intensive Care Med, vol. 30, pp. 241–7, 2004. View at: Google Scholar
- P. Casaseca-de-la-Higuera, M. Martin-Fernandez, and C. Alberola-Lopez, “Weaning from mechanical ventilation: a retrospective analysis leading to a multimodal perspective,” IEEE Trans Biomed Eng, vol. 53, pp. 1330–45, 2006. View at: Google Scholar
- M. S. Ellenby, J. McNames, S. Lai et al., “Uncoupling and recoupling of autonomic regulation of the heart beat in pediatric septic shock,” Shock, vol. 16, pp. 274–7, 2001. View at: Google Scholar
- B. F. Giraldo, J. Chaparro, D. Ballesteros et al., “Study of the respiratory pattern variability in patients during weaning trials,” in Conf Proc IEEE Eng Med Biol Soc, vol. 6, pp. 3909–12, 2004. View at: Google Scholar
- P. J. Godin and T. G. Buchman, “Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome,” Crit Care Med, vol. 24, pp. 1107–16, 1996. View at: Google Scholar
- G. H. Van den Berghe, “The neuroendocrine stress response and modern intensive care: the concept revisited,” Burns, vol. 25, pp. 7–16, 1999. View at: Google Scholar
- M. Wysocki, C. Cracco, A. Teixeira et al., “Reduced breathing variability as a predictor of unsuccessful patient separation from mechanical ventilation,” Crit Care Med, vol. 34, pp. 2076–83, 2006. View at: Google Scholar
- G. D. Martich, C. S. Waldmann, and M. Imhoff, “Clinical informatics in critical care,” J Intensive Care Med, vol. 19, pp. 154–63, 2004. View at: Google Scholar
- G. A. Miller, “The magical number seven plus or minus two: some limits on our capacity for processing information,” Psychol Rev, vol. 63, pp. 81–97, 1956. View at: Google Scholar
- www.healthcare.philips.com/us_en/products/patient_monitoring/products/intellivue_patient_monitors/index.wpd.
- www.integra-ls.com/products/?product=48.
- www.medcompare.com/details/15937/Camino-MPM-1-Multi-Parameter-Monitor.html.
- www.somanetics.com/invos-system.
- www.hemedex.com/Clinical Applications.htm.
- www.cszmedical.com/products/hyper-hypthermia/Blanketrol3.htm.
Copyright
Copyright © 2010 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.