Table of Contents Author Guidelines Submit a Manuscript
Journal of Healthcare Engineering
Volume 1, Issue 2, Pages 185-196
http://dx.doi.org/10.1260/2040-2295.1.2.185
Research Article

Selective Inactivation of Viruses with Femtosecond Laser Pulses and its Potential Use for in Vitro Therapy

Shaw-Wei D. Tsen,1 Yu-Shan D. Tsen,2 K. T. Tsen,3 and T. C. Wu4

1School of Medicine, Washington University, St. Louis, Missouri 63110, USA
2Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
3Department of Physics, Arizona State University, Tempe, AZ 85287, USA
4Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA

Copyright © 2010 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Rosenheck and P. Doty, “The far ultraviolet absorption spectra of polypeptide and protein solutions and their dependence on conformation,” Proc Natl. Acad. Sci. U S A, vol. 47, no. 11, pp. 1775–1785, 1961. View at Google Scholar
  2. J. C. Sutherland and K. P. Griffin, “Absorption spectrum of DNA for wavelengths greater than 300 nm,” Radiation Research, vol. 86, 3990410, 1981.
  3. B. J. Bryant and H. G. Klein, “Pathogen Inactivation: The Definitive Safeguard for the Blood Supply,” Arch. Pathol. Lab. Med., vol. 131, pp. 719–733, 2007. View at Google Scholar
  4. K. T. Tsen, S.-W. D. Tsen, C.-L. Chang, C.-F. Hung, T. C. Wu, and J. G. Kiang, “Inactivation of viruses by coherent excitations with a low power visible femtosecond laser,” Virology J., vol. 4, no. 50, pp. 1–5, 2007. View at Google Scholar
  5. K. T. Tsen, S.-W D. Tsen, C.-L. Chang, C.-F. Hung, T. C. Wu, and J. G. Kiang, “Inactivation of viruses by laser-driven coherent excitations via impulsive stimulated Raman scattering process,” J. Biomedical Optics, vol. 12, no. 1–6, 064030, 2007. View at Google Scholar
  6. K. T. Tsen, S.-W. D. Tsen, C.-L. Chang, C.-F. Hung, T. C. Wu, and J. G. Kiang, “Inactivation of viruses with a very low power visible femtosecond laser,” J. Physics: Condensed Matter, vol. 19, no. 1–9, 322102, 2007. View at Google Scholar
  7. K. T. Tsen, S.-W. D. Tsen, O. F. Sankey, and J. G. Kiang, “Selective inactivation of microorganisms with near-infrared femtosecond laser pulses,” J Phys: Condensed Matter, vol. 19, no. 1–7, 472201, 2007. View at Google Scholar
  8. K. T. Tsen, Shaw-Wei D Tsen, Chien-Fu Hung, T.-C. Wu, and Juliann G Kiang, “Selective inactivation of human immunodeficiency virus with subpicosecond near-infrared laser pulses,” J. Phys.: Condensed Matter, vol. 20, no. 1–7, 252205, 2008. View at Google Scholar
  9. K. T. Tsen, Shaw-Wei D. Tsen, Q. Fu et al., “Photonic approach to the selective inactivation of viruses with a near-infrared subpicosecond fiber laser,” J. Biomedical Optics, vol. 14, no. 1–7, 064042, 2009. View at Google Scholar
  10. A. Miyanohara and K. Bouic, 2005, http://www.virapur.com/?page-id=41.
  11. Constructs and detailed protocols for the preparation of the pseudovirions can be found online at http://home.ccr.cancer.gov/lco/default.asp.
  12. T. Mosmann, J. Immunol. Methods, vol. 65, p. 55, 1983.
  13. Y.-X. Yan, E. B. Gamble Jr., and Keith A. Nelson, “Impulsive stimulated scattering: General importance in femtosecond laser pulse interactions with matter, and spectroscopic applications,” J. Chem. Phys., vol. 83, pp. 5391–5399, 1985. View at Google Scholar
  14. K. A. Nelson, R. J. D. Miller, D. R. Lutz, and M. D. Fayer, “Optical generation of tunable ultrasonic waves,” J. Appl. Phys., vol. 53, pp. 1144–1149, 1982. View at Google Scholar
  15. S. De Silvestri, J. G. Fugimoto, E. P. Ippen, E. B. Gamble Jr., L. R. Williams, and K. A. Nelson, “Femtosecond time-resolved measurements of optic phonon dephasing by impulsive stimulated raman scattering in α-perylene crystal from 20 to 300 K,” Chem. Phys. Lett., vol. 116, pp. 146–152, 1985. View at Google Scholar
  16. K. A. Nelson, “Stimulated Brillouin scattering and optical excitation of coherent shear Waves,” J. Appl. Phys., vol. 53, pp. 6060–6063, 1982. View at Google Scholar
  17. G. C. Cho, W. Kutt, and H. Kurz, “Subpicosecond time-resolved coherent-phonon oscillations in GaAs,” Phys. Rev. Lett., vol. 65, pp. 764–766, 1990. View at Google Scholar
  18. T. K. Cheng, J. Vidal, H. J. Zeiger, G. Dresselhaus, M. S. Dresselhaus, and E. P. Ippen, “Mechanism for displacive excitation of coherent phonons in Sb, Bi, Te, and Ti2O3,” Appl. Phys. Lett., vol. 59, pp. 1923–1925, 1991. View at Google Scholar
  19. J. M. Chwalek, C. Uher, J. F. Whittaker, and G. A. Mourou, “Subpicosecond time-resolved studies of coherent phonon oscillations in thin-film YBa2Cu3O6+x (x<0.4),” Appl. Phys. Lett., vol. 58, pp. 980–982, 1991. View at Google Scholar
  20. R. Merlin, “Generating coherent THz phonons with light pulses,” Solid State Communications, vol. 102, pp. 207–220, 1997. View at Google Scholar
  21. M. Boustie, L. Berthe, T. de Resseguier, and M. Arrigoni, “Laser shock waves: fundamentals and applications,” in Proc. 1st Int. Symp. on Laser Ultrasonics: Science, Technology and Applications, paper #2, National Research Council of Canada, Montreal, 2008.
  22. L. T. Goodnough, “Risks of blood transfusion,” Anesthesiology clinics of North America, vol. 23, no. 2, pp. 241–252, v (2005). View at Google Scholar