Research Article | Open Access
Maria-Louisa Izamis, Tim a. Berendsen, Korkut Uygun, Martin L. Yarmush, "Addressing the Donor Liver Shortage with EX VIVO Machine Perfusion", Journal of Healthcare Engineering, vol. 3, Article ID 379016, 20 pages, 2012. https://doi.org/10.1260/2040-2295.3.2.279
Addressing the Donor Liver Shortage with EX VIVO Machine Perfusion
Abstract
Despite a critical shortage of viable donor livers for transplantation, only a fraction of the available organs are used. Donor organ defects, which in the majority of cases are caused by extensive exposure to ischemia, cannot be reversed by static cold storage, the current gold standard of organ preservation. In this review, the role of machine perfusion (MP) in the recovery of non-transplantable ischemic donor organs is discussed. Though still in the experimental phase, various models of MP have consistently demonstrated that ischemic donor organs can be recovered to a transplantable state through continuous perfusion. MP can also provide dynamic quantitative assessments of the extent of ischemia, in addition to predicting the likelihood of organ recovery. Continued endeavors to translate MP into clinical use and eventually incorporate it into routine donor organ care will have a significant impact on the quality and availability of transplantable donor organs.
References
- United Network for Organ Sharing, http://www.unos.org/, Accessed 1 May, 2011.
- R. M. Merion, “Current status and future of liver transplantation,” Seminars in Liver Disease, vol. 30, no. 4, pp. 411–21, 2010. View at: Google Scholar
- W. Bernal, G. Auzinger, A. Dhawan, and J. Wendon, “Acute liver failure,” Lancet, vol. 376, no. 9736, pp. 190–201, 2010. View at: Google Scholar
- L. A. Siminoff, R. M. Arnold, and J. Hewlett, “The process of organ donation and its effect on consent,” Clin Transplant, vol. 15, pp. 39–47, 2001. View at: Google Scholar
- R. W. Evans, C. E. Orlans, and N. L. Ascher, “The potential supply of organ donors,” JAMA, vol. 267, pp. 239–46, 1992. View at: Google Scholar
- R. H. Deshpande and N. Heaton, “Can non-heart-beating donors replace cadaveric heart-beating liver donors?” Journal of Hepatology, vol. 45, pp. 499–503, 2006. View at: Google Scholar
- W. Boettcher, F. Merkle, and H. H. Weitkemper, “History of extracorporeal circulation: the conceptional and developmental period,” J Extra Corpor Technol, vol. 35, no. 3, pp. 172–83, 2003. View at: Google Scholar
- A. Carrel and C. A. Lindbergh, The culture of organs, ed. P. B. Hoeber, New York, 1938.
- R. Hems, B. D. Ross, M. N. Berry, and H. A. Krebs, “Gluconeogenesis in the perfused rat liver,” Biochem J, vol. 101, pp. 284–292, 1966. View at: Google Scholar
- H. F. Woods, L. V. Eggleston, and H. A. Krebs, “The cause of hepatic accumulation of fructose 1-phosphate on fructose loading,” Biochem J, vol. 119, no. 3, pp. 501–10, 1970. View at: Google Scholar
- H. F. Woods and H. A. Krebs, “Lactate production in the perfused rat liver,” Biochem J, vol. 125, pp. 129–39, 1971. View at: Google Scholar
- H. Tolboom, R. Pouw, K. Uygun et al., “A Model for Normothermic Preservation of the Rat Liver,” Tissue Eng, vol. 13, no. 8, pp. 2143–2151, 2007. View at: Google Scholar
- C. Y. Lee, J. Shailendra, H. M. Duncan et al., “Survival transplantation of preserved non-heart-beating donor rat livers: preservation by hypothermic machine perfusion,” Transplantation, vol. 76, no. 10, pp. 1432–6, 2003. View at: Google Scholar
- T. A. Berendsen, B. Bruinsma, J. Lee et al., “A simplified sub-normothermic machine perfusion model restores ischemically damaged liver grafts in a rat model of orthotopic liver transplantation,” Tranplantation Research, 2011. Accepted. View at: Google Scholar
- C. Fondevila, A. J. Hessheimer, M. H. J. Maathuis et al., “Superior preservation of DCD livers with continuous normothermic perfusion,” Ann Surg, vol. 254, pp. 1000–7, 2011. View at: Google Scholar
- S. D. St Peter, C. J. Imber, I. Lopez, D. Hughes, and P. J. Friend, “Extended preservation of non-heart-beating donor livers with normothermic machine perfusion,” Br J Surg, vol. 89, no. 5, pp. 609–16, 2002. View at: Google Scholar
- S. P. Reddy, S. Bhattachariya, N. Maniakin et al., “Preservation of porcine non-heart-beating donor livers by sequential cold storage and warm perfusion,” Transplantation, vol. 77, no. 9, pp. 1328–32, 2004. View at: Google Scholar
- J. Brockmann, S. Reddy, C. Coussios et al., “Normothermic perfusion: a new paradigm for organ preservation,” Ann Surg, vol. 250, no. 1, pp. 1–6, 2009. View at: Google Scholar
- S. Reddy, M. Zilvetti, J. Brockmann, A. McLaren, and P. Friend, “Liver transplantation from non-heart-beating donors - current status and future prospects,” Liver Transplantation, vol. 10, no. 10, pp. 1223–32, 2004. View at: Google Scholar
- M. Vairetti, A. Ferrigno, F. Carlucci et al., “Subnormothermic machine perfusion protects steatotic livers against preservation injury: a potential for donor pool increase?” Liver Transpl, vol. 15, no. 1, pp. 20–9, 2009. View at: Google Scholar
- D. Nagrath, H. Xu, Y. Tanimura et al., “Metabolic preconditioning of donor organs: defatting fatty livers by normothermic perfusion ex vivo,” Metab Eng, vol. 11, no. 4-5, pp. 274–83, 2009. View at: Google Scholar
- J. D. Perkins, “Defatting the fatty liver with normothermic perfusion of the liver allograft,” Liver Transplantation, vol. 15, no. 10, pp. 1366–7, 2009. View at: Google Scholar
- D. Christoforidis, O. Martinet, F. J. Lejeune, and F. Mosimann, “Isolated liver perfusion for non-resectable liver tumours: a review,” Eur J Surg Oncol, vol. 28, no. 8, pp. 875–90, 2002. View at: Google Scholar
- T. Pencavel, R. Seth, A. Hayes et al., “Locoregional intravascular viral therapy of cancer: precision guidance for Paris's arrow?” Gene Ther, vol. 17, no. 8, pp. 946–60, 2010. View at: Google Scholar
- B. van Elten, A. M. Eggermont, S. T. van Tiel, G. Ambagtsheer, J. H. de Wilt, and T. L. ten Hagen, “Gene therapy in in vivo isolated perfusion models,” Curr Gene Ther, vol. 5, no. 2, pp. 195–202, 2005. View at: Google Scholar
- G. T. Everson and C. C. Kulig, “Antiviral therapy for hepatitis C in the setting of liver transplantation,” Curr Treat Options Gastroenterol, vol. 9, no. 6, pp. 520–9, 2006. View at: Google Scholar
- S. Kanoria, R. Jalan, A. M. Seifalian, R. Williams, and B. R. Davidson, “Protocols and mechanisms for remote ischemic preconditioning: a novel method for reducing ischemia reperfusion injury,” Transplantation, vol. 84, no. 4, pp. 445–58, 2007. View at: Google Scholar
- M. R. Schon, O. Kollmar, S. Wolf et al., “Liver transplantation after organ preservation with normothermic extracorporeal perfusion,” Ann Surgery, vol. 233, pp. 114–123, 2001. View at: Google Scholar
- A. J. Butler, M. A. Rees, D. G. D. Wight et al., “Successful extracorporeal porcine liver perfusion for 72 hr,” Transplantation, vol. 73, no. 8, pp. 1212–1218, 2002. View at: Google Scholar
- G. L. Riedel, J. L. Scholle, A. P. Shepherd, and W. F. Ward, “Effects of hematocrit on oxygenation of the isolated perfused rat liver,” Am J Physiol, vol. 245, no. 6, pp. G769–74, 1983. View at: Google Scholar
- K. Cheung, P. E. Hickman, J. M. Potter et al., “An optimized model for rat liver perfusion studies,” J Surg Res, vol. 66, no. 1, pp. 81–9, 1996. View at: Google Scholar
- J. V. Guarrera, S. D. Henry, B. Samstein et al., “Hypothermic machine preservation in human liver transplantation: the first clinical series,” Am J Transplant, vol. 10, no. 2, pp. 372–81, 2009. View at: Google Scholar
- J. V. Guarrera, J. Estevez, J. Boykin et al., “Hypothermic machine perfusion of liver grafts for transplantation: technical development in human discard and miniature swine models,” Transplant Proc, vol. 37, pp. 323–25, 2005. View at: Google Scholar
- A. Ferrigno, V. Rizzo, E. Boncompagni et al., “Machine perfusion at 20C reduces preservation damage to livers from non-heart beating donors,” Cryobiology, vol. 62, pp. 152–8, 2011. View at: Google Scholar
- M. Vairetti, A. Ferrigno, V. Rizzo et al., “Subnormothermic machine perfusion protects against rat liver preservation injury: a comparative evaluation with conventional cold storage,” Transplant Proc, vol. 39, no. 6, pp. 1765–1767, 2007. View at: Google Scholar
- J. B. Hanks, W. C. Meyers, C. L. Wellman, R. C. Hill, and R. S. Jones, “The effect of cell-free and erythrocyte-containing perfusion in rat livers,” Journal of Surgical Research, vol. 29, no. 2, 1979. View at: Google Scholar
- H. Xu, T. Berendsen, K. Kim et al., “Extracorporeal normothermic machine perfusion resuscitates pig DCD livers with extended warm ischemia,” J Surg Res, 2011. View at: Google Scholar
- J. D. Perkins, “Another comparison between University of Wisconsin solution and histidine-tryptophan-ketoglutarate solution for liver preservation,” Liver Transpl, vol. 15, no. 4, pp. 443–4, 2009. View at: Google Scholar
- J. F. McAnulty, “Hypothermic organ preservation by static storage methods: Current status and a view to the future,” Cryobiology, vol. 60, pp. S13–S19, 2010. View at: Google Scholar
- B. Gonzalez-Flecha, J. C. Cutrin, and A. Boveris, “Time course and mechanism of oxidative stress and tissue damage in rat liver subjected to in vivo ischemia-reperfusion,” J Clin Invest, vol. 91, pp. 456–64, 1993. View at: Google Scholar
- R. Adam, H. Bismuth, T. Diamond et al., “Effect of extended cold ischaemia with UW solution on graft function after liver transplantation,” Lancet, vol. 340, no. 8832, 1992. View at: Google Scholar
- N. Cuende, B. Miranda, J. F. Cañón, G. Garrido, and R. Matesanz, “Donor characteristics associated with liver graft survival,” Transplantation, vol. 79, no. 10, 2005. View at: Google Scholar
- F. O. Belzer and J. H. Southard, “Principles of solid-organ preservation by cold storage,” Transplantation, vol. 45, no. 4, pp. 673–676, 1988. View at: Google Scholar
- R. Y. Calne, D. E. Pegg, J. Pryse-Davies, and F. L. Brown, “Renal preservation by ice-cooling. An experimental study relating to kidney transplantation from cadavers,” Br Med J, vol. 2, no. 5358, pp. 651–5, 1963. View at: Google Scholar
- J. A. Fridell, R. S. Mangus, and A. J. Tector, “Clinical experience with histidine-tryptophan-ketoglutarate solution in abdominal organ preservation: a review of recent literature,” Clin Transpl, vol. 23, no. 3, pp. 305–12, 2009. View at: Google Scholar
- L. Feng, N. Zhao, X. Yao et al., “Histidine-tryptophan-ketoglutarate solution vs. University of Wisonsin solution for liver transplantation: a systematic review,” Liver Transpl, vol. 13, no. 8, pp. 1125–36, 2007. View at: Google Scholar
- H. Janssen, P. H. Janssen, and C. E. Broelsch, “UW is superior to Celsior and HTK in the protection of human liver endothelial cells against preservation injury,” Liver Transpl, vol. 10, no. 12, pp. 1514–23, 2004. View at: Google Scholar
- N. V. Jamieson, R. Sundberg, S. Lindell et al., “Preservation of the canine liver for 24–48 hours using simple cold storage with UW solution,” Transplantation, vol. 46, no. 4, pp. 517–22, 1988. View at: Google Scholar
- J. Moen, K. Claesson, H. Pienaar et al., “Preservation of dog liver, kidney, and pancreas using the Belzer-UW solution with a high-sodium and low-potassium content,” Transplantation, vol. 47, no. 6, pp. 940–5, 1989. View at: Google Scholar
- M. Kalayoglu, R. M. Hoffmann, A. M. D'Alessandro, J. D. Pirsch, H. W. Sollinger, and F. O. Belzer, “Results of extended preservation of the liver for clinical transplantation,” Lancet, vol. 1, no. 8586, pp. 617–9, 1988. View at: Google Scholar
- S. Todo, J. Nery, K. Yanaga, L. Podesta, R. D. Gordon, and T. E. Starzl, “Extended preservation of human liver grafts with UW solution,” JAMA, vol. 261, no. 5, pp. 711–4, 1989. View at: Google Scholar
- K. Tekin, C. J. Imber, M. Atli et al., “A simple scoring system to evaluate the effects of cold ischemia on marginal liver donors,” Transplantation, vol. 77, no. 3, pp. 411–6, 2004. View at: Google Scholar
- R. J. Porte, R. J. Ploeg, B. Hansen et al., “Long-term graft survival after liver transplantation in the UW era: late effects of cold ischemia and primary dysfunction. European Multicentre Study Group,” Transpl Int, vol. 11, Suppl 1, pp. S164–7, 1998. View at: Google Scholar
- R. J. Stratta, R. P. Wood, A. N. Langnas et al. et al., “The impact of extended preservation on clinical liver transplantation,” Transplantation, vol. 50, no. 3, pp. 438–43, 1990. View at: Google Scholar
- F. O. Belzer, A. M. D'Alessandro, R. M. Hoffmann et al., “The use of UW solution in clinical transplantation. A 4-year experience,” Ann Surg, vol. 215, no. 6, pp. 579–83, 1992. View at: Google Scholar
- B. J. Fuller and C. Y. Lee, “Hypothermic perfusion preservation: The future of organ preservation revisited?” Cryobiology, vol. 54, pp. 129–145, 2007. View at: Google Scholar
- C. Moers, J. Pirenne, A. Paul, R. J. Ploeg, and Machine Preservation Trial Study Group, “Machine perfusion or cold storage in deceased-donor kidney transplantation,” N Engl J Med, vol. 360, no. 1, pp. 7–19, 2009. View at: Google Scholar
- LH. Toledo-Pereyra, “Pulsatile perfusion is still indicated for kidney preservation,” Tranplantation, vol. 34, no. 2, p. 110, 1982. View at: Google Scholar
- RM. Merion, H. K. Oh, F. K. Port, L. H. Toledo-Pereyra, and J. G. Turcotte, “A prospective controlled trial of coldstorage versus machine-perfusion preservation in cadaveric renal transplantation,” Transplantation, vol. 50, no. 2, pp. 230–3, 1990. View at: Google Scholar
- S. D. St Peter, C. J. Imber, and P. J. Friend, “Liver and kidney preservation by perfusion,” The Lancet, vol. 359, pp. 604–13, 2002. View at: Google Scholar
- S. Jain, C. Y. Lee, S. Baicu et al., “Hepatic function in hypothermically stored porcine livers: Comparison of hypothermic machine perfusion vs cold storage,” Transpl Proc, vol. 37, pp. 340–1, 2005. View at: Google Scholar
- N. Yamamoto, Y. Konishi, S. Wakashiro et al., “Seventy-two-hour preservation of porcine liver by continuous hypothermic perfusion with UW solution in comparison with simple cold storage,” J Surg Res, vol. 51, no. 4, pp. 288–92, 1991. View at: Google Scholar
- B. H. Pienaar, S. L. Lindell, T. Van Gulik, J. H. Southard, and F. O. Belzer, “Seventy two hour preservation of the canine liver by machine perfusion,” Transplantation, vol. 49, pp. 258–60, 1990. View at: Google Scholar
- J. Benichou, C. G. Halgrimson, R. Weil 3rd, L. J. Koep, and T. E. Starzl, “Canine and human liver preservation for 6 to 18 hr by cold infusion,” Transplantation, vol. 24, no. 6, pp. 407–11, 1977. View at: Google Scholar
- L. Brettschneider, J. Kolff, G. V. Smith, A. J. Martin, P. Taylor, and T. E. Starzl, “An evaluation of perfusion constituents in liver preservation,” Surg. Forum, vol. 19, pp. 354–6, 1968. View at: Google Scholar
- J. V. Guarrera, S. D. Henry, S. W. Chen et al., “Hypothermic machine preservation attenuates ischemia/reperfusion markers after liver transplantation: preliminary results,” J Surg Res, vol. 167, no. 2, pp. e365–73, 2010. View at: Google Scholar
- L. Matsuoka, T. Shah, S. Aswad et al., “Pulsatile perfusion reduces the incidence of delayed graft function in expanded criteria donor kidney transplantation,” Am J Transplant, vol. 6, no. 6, 2006. View at: Google Scholar
- K. Hashimoto and C. Miller, “The use of marginal grafts in liver transplantation,” J Hepatobiliary Pancreat Sci, vol. 15, pp. 92–101, 2008. View at: Google Scholar
- “A definition of irreversible coma. Report of the Ad Hoc Committe of the Harvard Medical School to Examine the Definition of Brain Death,” JAMA, vol. 205, pp. 337–40, 1968. View at: Google Scholar
- J. W. Daemen, G. Kootstra, R. M. Wijnen, M. Yin, and E. Heineman, “Nonheart-beating donors: the Maastricht experience,” Clin Transpl, pp. 303–16, 1994. View at: Google Scholar
- N. Matsuno, M. Uchiyama, H. Iwamoto et al., “Machine perfusion preservation for liver transplantation from non-heart-beating donors with agonal stage,” Transpl Proc, vol. 34, pp. 2610–11, 2002. View at: Google Scholar
- H. Iwamoto, N. Matsuno, Y. Narumi et al., “Beneficial effect of machine perfusion preservation on liver transplantation from non-heart-beating donors,” Transpl Proc, vol. 32, no. 7, pp. 1645–6, 2000. View at: Google Scholar
- P. Dutkowski, O. de Rougemont, and P. A. Clavien, “Machine perfusion for, “marginal” liver grafts,” Am J Transplant, vol. 8, no. 5, pp. 917–24, 2008. View at: Google Scholar
- B. Lüer, M. Koetting, P. Efferz, and T. Minor, “Role of oxygen during hypothermic machine perfusion preservation of the liver,” Transpl Int, vol. 23, no. 9, pp. 944–50, 2010. View at: Google Scholar
- C. Y. Lee, S. Jain, H. M. Duncan et al., “Survival transplantation of preserved non-heartbeating donor rat livers: Preservation by hypothermic machine perfusion,” Transplantation, vol. 76, no. 10, pp. 1432–1436, 2003. View at: Google Scholar
- S. Manekeller and T. Minor, “Possibility of conditioning predamaged grafts after cold storage: influences of oxygen and nutritive stimulation,” Transpl Int, vol. 10, no. 8, pp. 667–74, 2006. View at: Google Scholar
- O. de Rougemont, S. Breitenstein, B. Leskosek et al., “One hour hypothermic oxygenated perfusion (HOPE) protects nonviable liver allografts donated after cardiac death,” Ann Surg, vol. 250, no. 5, pp. 674–83, 2009. View at: Google Scholar
- P. Dutkowski, R. Graf, and P. A. Clavien, “Rescue of the cold preserved rat liver by hypothermic oxygenated machine perfusion,” Am J Transplant, vol. 6, no. 5 Pt 1, pp. 903–12, 2006. View at: Google Scholar
- W. Isselhard and T. Minor, “Gaseous oxygen for protection and conditioning of organs during ischemia,” Zentralbl Chir, vol. 124, no. 4, pp. 252–9, 1999. View at: Google Scholar
- T. Minor, H. Klauke, B. Vollmar, W. Isselhard, and M. D. Menger, “Biophysical aspects of liver aeration by vascular persufflation with gaseous oxygen,” Transplantation, vol. 63, no. 12, pp. 1843–6, 1997. View at: Google Scholar
- J. Stegemann, A. Hirner, U. Rauen, and T. Minor, “Gaseous oxygen persufflation or oxygenated machine perfusion with Custodiol-N for long-term perservation of ischemic rat livers?” Cryobiology, vol. 58, no. 1, pp. 45–51, 2008. View at: Google Scholar
- T. Minor and W. Isselhard, “Synthesis of high energy phosphates during cold ischemic rat liver preservation with gaseous oxygen insufflation,” Transplantation, vol. 61, no. 1, pp. 20–2, 1996. View at: Google Scholar
- A. Lanir, R. L. Jenkins, C. Caldwell, R. G. Lee, U. Khettry, and M. E. Clouse, “Hepatic transplantation survival: Correlation with adenine nucleotide level in donor liver,” Hepatology, vol. 8, no. 3, pp. 471–5, 1988. View at: Google Scholar
- T. Minor and M. Kötting, “Gaseous oxygen for hypothermic preservation of predamaged liver grafts: fuel to cellular homeostasis or radical tissue alteration?” Cryobiology, vol. 40, no. 2, pp. 182–6, 2000. View at: Google Scholar
- J. Treckmann, T. Minor, S. Saad et al., “Retrograde oxygen persufflation preservation of human livers: A pilot study,” Liver Transpl, vol. 14, no. 3, pp. 358–64, 2008. View at: Google Scholar
- P. A. Clavien, P. R. Harvey, and S. M. Strasberg, “Preservation and reperfusion injuries in liver allografts: an overview and synthesis of current studies,” Transplantation, vol. 53, pp. 957–78, 1992. View at: Google Scholar
- J. Briceño, T. Marchal, J. Padillo, G. Solórzano, and C. Pera, “Influence of marginal donors on liver preservation injury,” Transplantation, vol. 74, no. 4, pp. 522–6, 2002. View at: Google Scholar
- C. Fondevila, R. W. Busuttil, and J. W. Kupiec-Weglinski, “Hepatic ischemia reperfusion injury: a fresh look,” Exp Mol Pathol, vol. 74, pp. 86–93, 2003. View at: Google Scholar
- P. Dutkowski, S. Schönfeld, T. Heinrich et al., “Reduced oxidative stress during acellular reperfusion of the rat liver after hypothermic oscillating perfusion,” Transplantation, vol. 68, no. 1, pp. 44–50, 1999. View at: Google Scholar
- H. Xu, C. Y. Lee, M. G. Clemens, and J. X. Zhang, “Prolonged hypothermic machine perfusion preserves hepatocellular function but potentiates endothelial cell dysfunction in rat livers,” Transplantation, vol. 77, no. 11, pp. 1676–82, 2004. View at: Google Scholar
- K. Vekemans, Q. Liu, J. Pirenne, and D. Monbaliu, “Artificial circulation of the liver: Machine perfusion as a preservation method in liver transplantation,” The Anatomical Record, vol. 291, pp. 735–40, 2008. View at: Google Scholar
- J. C. Caldwell-Kenkel, R. G. Thurman, and J. J. Lemasters, “Selective loss of nonparenchymal cell viability after cold ischemic storage of rat livers,” Transplantation, vol. 45, no. 5, pp. 834–7, 1988. View at: Google Scholar
- C. Y. Lee, J. Zhang, H. deSilva, R. Coger, and M. Clemens, “Heterogeneous flow patterns during hypothermic machine perfusion preservation of livers,” Transplantation, vol. 70, no. 12, pp. 1797–1802, 1802. View at: Google Scholar
- R. W. Jamieson and P. J. Friend, “Organ reperfusion and preservation,” Frontiers in Bioscience, vol. 13, pp. 221–35, 2008. View at: Google Scholar
- M. H. Maathuis, H. G. Leuvenink, and R. J. Ploeg, “Perspectives in organ preservation,” Transplantation, vol. 83, no. 10, pp. 1289–1297, 2007. View at: Google Scholar
- S. P. Reddy, J. Butler, and P. J. Friend, “Normothermic perfusion: A mini review,” Transplantation, vol. 87, no. 5, pp. 631–2, 2008. View at: Google Scholar
- C. J. Imber, S. D. St Peter, I. Lopez de Cenarruzabeitia et al., “Advantages of normothermic perfusion over cold storage in liver preservation,” Transplantation, vol. 73, no. 5, pp. 701–9, 2002. View at: Google Scholar
- H. Tolboom, R. E. Pouw, M. L. Izamis et al., “Recovery of Warm Ischemic Rat Liver Grafts by Normothermic Extracorporeal Perfusion,” Transplantation, vol. 87, no. 2, pp. 170–177, 2009. View at: Google Scholar
- M. R. Schön, O. Kollmar, S. Wolf et al., “Liver transplantation after organ preservation with normothermic extracorporeal perfusion,” Ann Surg, vol. 233, no. 1, pp. 114–123, 2001. View at: Google Scholar
- A. Otero, M. Gómez-Gutiérrez, F. Suárez et al., “Liver transplantation from Maastricht category 2 non-heart-beating donors,” Transplantation, vol. 76, no. 7, pp. 1068–73, 2003. View at: Google Scholar
- J. Alvarez, M. R. del Barrio, J. Arias et al., “Five years of experience with non-heart beating donors coming from the streets,” Transpl Proc, vol. 34, pp. 2589–2590, 2002. View at: Google Scholar
- C. Fondevila, A. J. Hessheimer, A. Ruiz et al., “Liver transplant using donors after unexpected cardiac death: Novel preservation protocol and acceptance criteria,” Am J Transplant, vol. 7, pp. 1849–55, 2007. View at: Google Scholar
- S. Jiménez-Galanes, M. J. Meneu-Diaz, A. M. Elola-Olaso et al., “Liver transplantation using uncontrolled non-heart-beating donors under normothermic extracorporeal membrane oxygenation,” Liver Transpl, vol. 15, pp. 1110–18, 2009. View at: Google Scholar
- J. Quintela, B. Gala, I. Baamonde et al., “Long-term results for liver transplantation from non-heart-beating donors maintained with chest and abdominal compression-decompression,” Transpl Proc, vol. 37, no. 9, pp. 3857–8, 2005. View at: Google Scholar
- P. Dutkowski, K. Furrer, Y. Tian, R. Graf, and P. A. Clavien, “Novel short-term hypothermic oxygenated perfusion (HOPE) system prevents injury in rat liver graft from non-heart beating donor,” Annals of Surgery, vol. 244, no. 6, 2006. View at: Google Scholar
- H. Tolboom, J. M. Milwid, M. L. Izamis, K. Uygun, F. Berthiaume, and M. L. Yarmush, “Sequential cold storage and normothermic perfusion of the ischemic rat liver,” Transplantation Proc, vol. 40, no. 5, pp. 1306–1309, 2008. View at: Google Scholar
- A. Ar'Rajab, B. Ahrén, and A. Nilsson, “Temperature dependent phospholipid degradation in the rat liver during preservation for transplantation,” Transplantation, vol. 57, no. 8, pp. 1153–60, 1994. View at: Google Scholar
- P. Biberthaler, B. Luchting, S. Massberg et al., “The influence of organ temperature on hepatic ischemia-reperfusion injury,” Transplantation, vol. 72, no. 9, pp. 1486–1490, 2001. View at: Google Scholar
- P. Olschewski, P. Gass, V. Ariyakhagorn et al., “The influence of storage temperature during machine perfusion on preservation quality of marginal donor livers,” Cryobiology, vol. 60, no. 3, pp. 337–43, 2010. View at: Google Scholar
- H. Tolboom, M. L. Izamis, N. Sharma et al., “Subnormothermic machine perfusion for recovery and preservation of ischemic rat liver grafts,” Journal of Surgical Research, 2011, PMID 21550058. View at: Google Scholar
- H. Tolboom, R. E. Pouw, M. L. Izamis et al., “Recovery of Warm Ischemic Rat Liver Grafts by Normothermic Extracorporeal Perfusion,” Transplantation, vol. 87, pp. 170–177, 2009. View at: Google Scholar
- A. Nui, T. Katsuramaki, H. Kikuchi et al., “The functional integrity of a normothermic perfusion system using artificial blood in pig liver,” J Surg Res, vol. 131, pp. 189–98, 2006. View at: Google Scholar
- B. Sánchez-Perez, J. Santoyo, J. L. Fernández-Aguilar et al., “Preoperative factors and models predicting mortality in liver tranplantation,” Transplant Proc, vol. 37, no. 3, 2005. View at: Google Scholar
- J. Busquets, X. Xiol, J. Figueras et al., “The impact of donor age on liver transplantation: influence of donor age on early liver function and on subsequent patient and graft survival,” Transplantation, vol. 71, no. 12, p. 1765, 2001. View at: Google Scholar
- Ch. Zapletal, D. Faust, C. Wullstein et al., “Does the liver ever age? Results of liver transplantation with donors above 80 years of age,” Transpl Proc, vol. 37, no. 2, 2005. View at: Google Scholar
- J. Pirenne, D. Monbaliu, F. Van Gelder et al., “Liver transplantation using livers from septuagenarian and octogenarian donors: an underused strategy to reduce mortality on the waiting list,” Transpl Proc, vol. 37, no. 2, 2005. View at: Google Scholar
- J. H. Hoofnagle, M. Lombardero, R. K. Zetterman et al., “Donor age and outcome of liver transplantation,” Hepatology, vol. 24, no. 1, 1996. View at: Google Scholar
- H. Vilca Melendez, M. Rela, G. Murphy, and N. Heaton, “Assessment of graft function before liver transplantation: quest for the lost ark?” Transplantation, vol. 70, no. 4, pp. 560–5, 2000. View at: Google Scholar
- J. Ozer, M. Ratner, M. Shaw, W. Bailey, and S. Schomaker, “The current state of serum biomarkers of hepatotoxicity,” Toxicology, vol. 245, pp. 194–205, 2008. View at: Google Scholar
- D. Monbaliu, L. Libbrecht, R. De Vos et al., “The extent of vacuolation in non-heart beating porcine donor liver grafts prior to transplantation predicts their viability,” Liver Transpl, vol. 14, pp. 1256–1265, 2008. View at: Google Scholar
- T. Wu, “Predicting the viability of liver allografts procured from non-heart-beating donors: The role of histopathology,” Liver Transpl, vol. 14, pp. 1240–42, 2008. View at: Google Scholar
- S. Perk, M. L. Izamis, H. Tolboom et al., “A metabolic index of ischemic injury for perfusion-recovery of cadaveric rat livers,” PLoS ONE, vol. 6, no. 12, p. e28518, 2011. View at: Google Scholar
- K. Uygun, H. Tolboom, M. L. Izamis et al., “Diluted blood reperfusion as a model for transplantation of ischemic rat livers: ALT is a direct indicator of viability,” Transpl Proc, vol. 42, no. 7, pp. 2463–7, 2010. View at: Google Scholar
- J. Devlin, J. B. Dunne, R. A. Sherwood et al., “Relationship between early liver graft viability and enzyme activities in effluent preservation solution,” Transplantation, vol. 60, no. 7, pp. 627–31, 1995. View at: Google Scholar
- E. G. Pacheco, O. D. Silva Jr., A. K. Sankarankutty, and M. A. Ribeiro Jr., “Analysis of the liver effluent as a marker of preservation injury and early graft performance,” Transplant Proc, vol. 42, no. 2, pp. 435–9. View at: Google Scholar
- I. Marzi, Z. Zhong, J. J. Lemasters, and R. G. Thurman, “Evidence that graft survival is not related to parenchymal cell viability in rat liver transplantation,” Transplantation, vol. 48, pp. 463–8, 1989. View at: Google Scholar
- U. Rauen, J. Erhard, P. Kühnhenrich et al., “Nonparenchymal cell and hepatocellular injury to human liver grafts assessed by enzyme-release into the perfusate,” Langenbecks Arch Chir, vol. 379, no. 4, pp. 241–7, 1994. View at: Google Scholar
- JC. García-Valdecasas, J. Tabet, R. Valero et al., “Evaluation of ischemic injury during liver procurement from non-heart-beating donors,” European Surgical Research, vol. 31, pp. 447–456, 1999. View at: Google Scholar
- D. S. Pratt and M. M. Kaplan, “Evaluation of abnormal liver-enzyme results in asymptomatic patients,” N Engl J Med, vol. 342, pp. 1266–1271, 2000. View at: Google Scholar
- L. L. Almada, A. L. Scandizzi, E. E. Guibert, G. Furno, and J. V. Rodriguez, “Biliary inorganic phosphate as a tool for assessing cold preservation-reperfusion injury: a study in the isolated perfused rat liver model,” Liver Transpl, vol. 9, no. 2, pp. 160–9, 2003. View at: Google Scholar
- S. Op den Dries, M. E. Sutton, T. Lisman, and R. J. Porte, “Protection of bile ducts in liver transplantation: looking beyond ischemia,” Tranplantation, vol. 92, no. 4, pp. 373–9, 2011. View at: Google Scholar
- M. Hertl and A. B. Cosimi, “Living donor liver transplantation: how can we better protect the donors?” Transplantation, vol. 83, no. 3, pp. 263–264, 2007. View at: Google Scholar
- M. Hertl, M. C. Hertl, P. Kunkel et al., “Tauroursodeoxycholate ameliorates reperfusion injury after pig liver transplantation,” Transpl Int, vol. 12, no. 6, pp. 454–62, 1999. View at: Google Scholar
- M. Hertl, M. C. Hertl, D. Kluth, and C. E. Broelsch, “Hydrophilic bile salts protect bile duct epithelium during cold preservation: a scanning electron microscopy study,” Liver Transpl, vol. 6, no. 2, pp. 207–12, 2000. View at: Google Scholar
- M. Hertl, P. R. Harvey, P. E. Swanson et al., “Evidence of preservation injury to bile ducts by bile salts in the pig and its prevention by infusions of hydrophilic bile salts,” Hepatology, vol. 21, no. 4, pp. 1130–7, 1995. View at: Google Scholar
- T. A. Berendsen, M. L. Izamis, H. Xu et al., “Hepatocyte viability and adenosine triphosphate content decrease linearly over time during conventional cold storage of rat liver grafts,” Transpl Proc, vol. 43, no. 5, pp. 1484–8, 2011. View at: Google Scholar
- M. Net, R. Valero, R. Almenara et al., “Hepatic xanthine levels as viability preictor of livers procured from non-heart-beating donor pigs,” Transplantation, vol. 71, no. 9, pp. 1232–7, 2001. View at: Google Scholar
- W. Kamiike, M. Burdelski, G. Steinhoff, B. Ringe, W. Lauchart, and R. Pichlmayr, “Adenine nucleotide metabolism and its relation to organ viability in human liver transplantation,” Transplantation, vol. 45, pp. 138–43, 1988. View at: Google Scholar
- N. Tygstrup, “Determination of the hepatic elimination capacity (Lm) of galactose by a single injection,” Scand J Clin Lab Invest, vol. 18, Suppl 92, p. 118, 1966. View at: Google Scholar
- M. L. Izamis, N. S. Sharma, B. Uygun et al., “In situ metabolic flux analysis to quantify the liver metabolic response to experimental burn injury,” Biotechnol Bioeng, vol. 108, no. 4, pp. 839–52, 2010. View at: Google Scholar
- M. Oellerich, M. Burdelski, B. Ringe et al., “Lignocaine metabolite formation as a measure of pre-transplant liver function,” Lancet, vol. 1, no. 8639, 1989. View at: Google Scholar
- M. Oellerich, M. Burdelski, B. Ringe et al., “Functional state of the donor liver and early outcome of transplantation,” Transpl Proc, vol. 23, no. 1 Pt 2, 1991. View at: Google Scholar
- R. B. Zotz, J. von Schönfeld, J. Erhard et al., “Value of an extended monoethylglycinexylidide formation test and other dynamic liver function tests in liver transplant donors,” Tranplantation, vol. 63, no. 4, 1997. View at: Google Scholar
- W. Kamiike, M. Nakahara, K. Nakao et al., “Correlation Between Cellular Atp Level And Bile Excretion In The Rat-Liver,” Transplantation, vol. 39, no. 1, pp. 50–55, 1985. View at: Google Scholar
- P. L. Abt, N. M. Desai, M. D. Crawford et al., “Survival following liver transplantation from non-heart-beating donors,” Annals of Surgery, vol. 239, no. 1, pp. 87–92, 2004. View at: Google Scholar
- S. J. Karp, S. Johnson, A. Evenson et al., “Minimising cold ischemic time is essential in cardiac death donor-associated liver transplantation,” HPB (Oxford), vol. 13, no. 6, pp. 411–6, 2011. View at: Google Scholar
- K. Vajdová, R. Graf, and P. A. Clavien, “ATP-supplies in the cold-preserved liver: A long neglected factor of organ viability,” Hepatology, vol. 36, no. 6, pp. 1543–52, 2002. View at: Google Scholar
- V. Costa, J. Brophy, and M. McGregor, Pulsatile machine perfusion compared to cold storage in kidney preservation. 44, Montreal: Technology Assessment Unit of the McGill University Health Centre (MUHC), 2007.
- M. Bond, M. Pitt, J. Akoh, T. Moxham, M. Hoyle, and R. Anderson, “The effectiveness and cost-effectiveness of methods of storing donated kidneys from deceased donors: a systematic review and economic model,” Health Technol Assess, vol. 13, no. 38, pp. 1–156, 2009. View at: Google Scholar
- J. Wight, J. Chilcott, M. Holmes, and N. Brewer, “The clinical and cost-effectiveness of pulsatile machine perfusion versus cold storage of kidneys for transplantation retrieved from heart-beating and non-heart-beating donors,” Health Technol Assess, vol. 7, 2003. View at: Google Scholar
- C. Guyomard, C. Chesne, B. Meunier et al., “Primary culture of adult rat hepatocytes after 48-hour preservation of the liver with cold UW solution,” Hepatology, vol. 12, pp. 1329–1336, 1990. View at: Google Scholar
- R. D. Hughes, R. R. Mitry, A. Dhawan et al., “Isolation of hepatocytes from livers from non-heart-beating donors for cell transplantation,” Liver Transpl, vol. 12, no. 5, pp. 713–7, 2006. View at: Google Scholar
- B. E. Uygun, A. Soto-Gutierrez, H. Yagi et al., “Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix,” Nat Med, vol. 16, no. 7, pp. 814–20, 2010. View at: Google Scholar
Copyright
Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.