Research Article | Open Access
Amulya K. Saxena, Richard Ackbar, Micheal E. Höllwarth, "Tissue Engineering for the Neonatal and Pediatric Patients", Journal of Healthcare Engineering, vol. 3, Article ID 698194, 32 pages, 2012. https://doi.org/10.1260/2040-2295.3.1.21
Tissue Engineering for the Neonatal and Pediatric Patients
Abstract
Of all the surgical specialties, the remit of the pediatric surgeon encompasses the widest range of organ systems and includes disorders from the fetus to the adolescent. As such, the recent emergence of tissue engineering is of particular interest to the pediatric surgical community. The individual challenges of tissue engineering depend largely on the nature and function of the target tissue. In general, the main issues currently under investigation include the sourcing of an appropriate cell source, design of biomaterials for guided tissue growth, provision of a biomolecular stimulus to enhance cellular functions and the development of bioreactors to allow for prolonged periods of cell culture under specific physiological conditions. This review aims to provide a general overview of tissue engineering in the major organ systems, including the cardiovascular, digestive, urinary, respiratory, musculoskeletal, nervous, integumentary and lymphatic systems. Special attention is paid to pediatrics as well as recent clinical applications.
References
- A. Oosterlee and A. Rahmel, Eds., Eurotransplant International Foundation Annual Report, Eurotransplant International Foundation, Leiden, The Netherlands, 2008, ISBN-13: 978-90-71658-28-0.
- K. M. Harada, E. L. Mandia-Sampaio, T. V. de Sandes-Freitas et al., “Risk factors associated with graft loss and patient survival after kidney transplantation,” Transplant Proc., vol. 41, no. 9, pp. 3667–3670, 2009. View at: Google Scholar
- R. Reding, “Long-term complications of immunosuppression in pediatric liver recipients,” Acta Gastroenterol Belg., vol. 68, no. 4, pp. 453–456, 2005. View at: Google Scholar
- J. C. Magee, S. M. Krishnan, M. R. Benfield, D. T. Hsu, and B. L. Shneider, “Pediatric transplantation in the United States, 1997-2006,” Am J Transplant., vol. 8, no. 4 Pt 2, pp. 935–945, 2008. View at: Google Scholar
- R. Langer, J. P. Vacanti, C. A. Vacanti, A. Atala, L. E. Freed, and G. Vunjak-Novakovic, “Tissue engineering: biomedical applications,” Tissue Eng., vol. 1, no. 2, pp. 151–161, 1995. View at: Google Scholar
- J. J. Sistino, “Bioreactors for tissue engineering—a new role for perfusionists?” J Extra Corpor Technol., vol. 35, no. 3, pp. 200–202, 2003. View at: Google Scholar
- T. Takeda and J. P. Vacanti, “Hepatocyte transplantation in the dalmatian dog model of hyperuricosuria,” Tissue Eng., vol. 1, no. 4, pp. 355–360, 1995. View at: Google Scholar
- J. R. Lukish, M. R. Eichelberger, K. D. Newman et al., “The use of a bioactive skin substitute decreases length of stay for pediatric burn patients,” J Pediatr Surg., vol. 36, no. 8, pp. 1118–1121, 2001. View at: Google Scholar
- A. I. Caplan, “Mesenchymal stem cells,” J Orthop Res., vol. 9, no. 5, pp. 641–650, 1991. View at: Google Scholar
- C. Maniatopoulos, J. Sodek, and A. H. Melcher, “Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats,” Cell Tissue Res., vol. 254, no. 2, pp. 317–330, 1988. View at: Google Scholar
- H. Nakagami, R. Morishita, K. Maeda, Y. Kikuchi, T. Ogihara, and Y. Kaneda, “Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy,” J Atheroscler Thromb., vol. 13, no. 2, pp. 77–81, 2006. View at: Google Scholar
- C. A. Vacanti, “History of tissue engineering and a glimpse into its future,” Tissue Eng., vol. 12, no. 5, pp. 1137–1142, 2006. View at: Google Scholar
- M. Y. Chen, P. C. Lie, Z. L. Li, and X. Wei, “Endothelial differentiation of Wharton's jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells,” Exp Hematol., vol. 37, no. 5, pp. 629–640, 2009. View at: Google Scholar
- M. G. Roubelakis, K. I. Pappa, V. Bitsika et al., “Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells,” Stem Cells Dev., vol. 16, no. 6, pp. 931–952, 2007. View at: Google Scholar
- L. Thorrez, J. Shansky, L. Wang et al., “Growth, differentiation, transplantation and survival of human skeletal myofibers on biodegradable scaffolds,” Biomaterials, vol. 29, no. 1, pp. 75–84, 2008. View at: Google Scholar
- B. S. Kim and D. J. Mooney, “Scaffolds for engineering smooth muscle under cyclic mechanical strain conditions,” J Biomech Eng., vol. 122, no. 3, pp. 210–215, 2000. View at: Google Scholar
- O. E. Teebken, A. Bader, G. Steinhoff, and A. Haverich, “Tissue engineering of vascular grafts: human cell seeding of decellularised porcine matrix,” Eur J Vasc Endovasc Surg., vol. 19, no. 4, pp. 381–386, 2000. View at: Google Scholar
- P. D. Kemp, J. F. Cavallaro, and D. N. Hastings, “Effects of carbodiimide crosslinking and load environment on the remodeling of collagen scaffolds,” Tissue Eng., vol. 1, no. 1, pp. 71–79, 1995. View at: Google Scholar
- L. E. Freed, G. Vunjak-Novakovic, R. J. Biron et al., “Biodegradable polymer scaffolds for tissue engineering,” Biotechnology (N Y), vol. 12, no. 7, pp. 689–693, 1994. View at: Google Scholar
- W. L. Murphy, M. C. Peters, D. H. Kohn, and D. J. Mooney, “Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering,” Biomaterials, vol. 21, no. 24, pp. 2521–2527, 2000. View at: Google Scholar
- J. M. Kelm, V. Lorber, J. G. Snedeker et al., “A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks,” J Biotechnol., vol. 148, no. 1, pp. 46–55, 2010, Epub 2010 Mar 17. View at: Google Scholar
- T. Shimizu, M. Yamato, A. Kikuchi, and T. Okano, “Cell sheet engineering for myocardial tissue reconstruction,” Biomaterials, vol. 24, no. 13, pp. 2309–2316, 2003. View at: Google Scholar
- R. B. de Vries, A. Oerlemans, L. Trommelmans, K. Dierickx, and B. Gordijn, “Ethical aspects of tissue engineering: a review,” Tissue Eng Part B Rev., vol. 14, no. 4, pp. 367–375, 2008. View at: Google Scholar
- A. J. Oerlemans, C. H. Rodrigues, M. A. Verkerk, P. P. van den Berg, and W. J. Dekkers, “Ethical aspects of soft tissue engineering for congenital birth defects in children—what do experts in the field say?” Tissue Eng Part B Rev., vol. 16, no. 4, pp. 397–403, 2010. View at: Google Scholar
- L. Trommelmans, J. Selling, and K. Dierickx, “Ethical reflections on clinical trials with human tissue engineered products,” J Med Ethics., vol. 34, no. 9, e1, 2008. View at: Google Scholar
- N. Hibino, Y. Imai, T. Shin-oka et al., “First successful clinical application of tissue engineered blood vessel,” Kyobu Geka, vol. 55, no. 5, pp. 368–373, 2002. View at: Google Scholar
- A. Atala, S. B. Bauer, S. Soker, J. J. Yoo, and A. B. Retik, “Tissue-engineered autologous bladders for patients needing cystoplasty,” Lancet, vol. 367, no. 9518, pp. 1241–1246, 2006. View at: Google Scholar
- P. Macchiarini, P. Jungebluth, T. Go et al., “Clinical transplantation of a tissue-engineered airway,” Lancet, vol. 372, no. 9655, pp. 2023–2030, 2008. View at: Google Scholar
- N. Adachi, M. Ochi, M. Deie, Y. Ito, and Y. Izuta, “Lateral compartment osteoarthritis of the knee after meniscectomy treated by the transplantation of tissue-engineered cartilage and osteochondral plug,” Arthroscopy, vol. 22, no. 1, pp. 107–112, 2006. View at: Google Scholar
- G. J. Meijer, J. D. de Bruijn, R. Koole, and C. A. van Blitterswijk, “Cell based bone tissue engineering in jaw defects,” Biomaterials, vol. 29, no. 21, pp. 3053–3061, 2008. View at: Google Scholar
- P. Khairy, R. Ionescu-Ittu, A. S. Mackie, M. Abrahamowicz, L. Pilote, and A. J. Marelli, “Changing mortality in congenital heart disease,” J Am Coll Cardiol., vol. 56, no. 14, pp. 1149–1157, 2010. View at: Google Scholar
- A. J. Marelli, A. S. Mackie, R. Ionescu-Ittu, E. Rahme, and L. Pilote, “Congenital heart disease in the general population: changing prevalence and age distribution,” Circulation, vol. 115, no. 2, pp. 163–172, 2007. View at: Google Scholar
- T. Shin'oka, G. Matsumura, N. Hibino et al., “Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells,” J Thorac Cardiovasc Surg., vol. 129, no. 6, pp. 1330–1338, 2005. View at: Google Scholar
- H. M. Gardiner, “Keeping abreast of advances in fetal cardiology,” Early Hum Dev., vol. 82, no. 6, pp. 415–419, 2006. View at: Google Scholar
- J. D. Roh, R. Sawh-Martinez, M. P. Brennan et al., “Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling,” Proc Natl Acad Sci U S A., vol. 107, no. 10, pp. 4669–4674, 2010. View at: Google Scholar
- T. Shinoka, C. K. Breuer, R. E. Tanel et al., “Tissue engineering heart valves: valve leaflet replacement study in a lamb model,” Ann Thorac Surg., vol. 60, no. 6 Suppl, pp. S513–S516, 1995. View at: Google Scholar
- P. M. Dohmen, A. Lembcke, H. Hotz, D. Kivelitz, and W. F. Konertz, “Ross operation with a tissue-engineered heart valve,” Ann Thorac Surg., vol. 74, no. 5, pp. 1438–1442, 2002. View at: Google Scholar
- P. M. Dohmen, A. Lembcke, S. Holinski et al., “Mid-term clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure,” Ann Thorac Surg., vol. 84, no. 3, pp. 729–736, 2007. View at: Google Scholar
- S. Cebotari, A. Lichtenberg, I. Tudorache et al., “Clinical application of tissue engineered human heart valves using autologous progenitor cells,” Circulation, vol. 114, no. 1 Suppl, pp. I132–I137, 2006. View at: Google Scholar
- P. M. Dohmen, F. da Costa, S. Yoshi et al., “Histological evaluation of tissue-engineered heart valves implanted in the juvenile sheep model: is there a need for in-vitro seeding?” J Heart Valve Dis., vol. 15, no. 6, pp. 823–829, 2006. View at: Google Scholar
- B. Fadeel, B. Kasemo, M. Malmsten, and M. Strømme, “Nanomedicine: reshaping clinical practice,” J Intern Med., vol. 267, no. 1, pp. 2–8, 2010. View at: Google Scholar
- E. Wernike, M. O. Montjovent, Y. Liu et al., “VEGF incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo,” Eur Cell Mater., vol. 19, pp. 30–40, 2010. View at: Google Scholar
- J. M. Kelm, W. Moritz, D. Schmidt, S. P. Hoerstrup, and M. Fussenegger, “In vitro vascularization of human connective microtissues,” Methods Mol Med., vol. 140, pp. 153–166, 2007. View at: Google Scholar
- D. C. Clark, “Esophageal atresia and tracheoesophageal fistula,” Am Fam Physician, vol. 59, no. 4, pp. 910–916, 919–920, 1999. View at: Google Scholar
- J. A. Cauchi, R. G. Buick, P. Gornall, M. H. Simms, and D. H. Parikh, “Oesophageal substitution with free and pedicled jejunum: short- and long-term outcomes,” Pediatr Surg Int., vol. 23, no. 1, pp. 11–19, 2007. View at: Google Scholar
- G. S. Arul and D. Parikh, “Oesophageal replacement in children,” Ann R Coll Surg Engl., vol. 90, no. 1, pp. 7–12, 2008. View at: Google Scholar
- L. Spitz, “Esophageal atresia. Lessons I have learned in a 40-year experience,” J Pediatr Surg., vol. 41, no. 10, pp. 1635–1640, 2006. View at: Google Scholar
- T. Grikscheit, E. R. Ochoa, A. Srinivasan, H. Gaissert, and J. P. Vacanti, “Tissue-engineered esophagus: experimental substitution by onlay patch or interposition,” J Thorac Cardiovasc Surg., vol. 126, no. 2, pp. 537–544, 2003. View at: Google Scholar
- A. K. Saxena, K. Kofler, H. Ainödhofer, and M. E. Höllwarth, “Esophagus tissue engineering: hybrid approach with esophageal epithelium and unidirectional smooth muscle tissue component generation in vitro,” J Gastrointest Surg., vol. 13, no. 6, pp. 1037–1043, 2009. View at: Google Scholar
- Y. Takimoto, T. Nakamura, Y. Yamamoto, T. Kiyotani, M. Teramachi, and Y. Shimizu, “The experimental replacement of a cervical esophageal segment with an artificial prosthesis with the use of collagen matrix and a silicone stent,” J Thorac Cardiovasc Surg., vol. 116, no. 1, pp. 98–106, 1998. View at: Google Scholar
- Y. Yamamoto, T. Nakamura, Y. Shimizu et al., “Intrathoracic esophageal replacement in the dog with the use of an artificial esophagus composed of a collagen sponge with a double-layered silicone tube,” J Thorac Cardiovasc Surg., vol. 118, no. 2, pp. 276–286, 1999. View at: Google Scholar
- A. K. Saxena, H. Ainoedhofer, and M. E. Höllwarth, “Culture of ovine esophageal epithelial cells and in vitro esophagus tissue engineering,” Tissue Eng Part C Methods, vol. 16, no. 1, pp. 109–114, 2010. View at: Google Scholar
- K. Kofler, H. Ainoedhofer, M. E. Höllwarth, and A. K. Saxena, “Fluorescence-activated cell sorting of PCK-26 antigen-positive cells enables selection of ovine esophageal epithelial cells with improved viability on scaffolds for esophagus tissue engineering,” Pediatr Surg Int., vol. 26, no. 1, pp. 97–104, 2010. View at: Google Scholar
- B. L. Beckstead, S. Pan, A. D. Bhrany, A. M. Bratt-Leal, B. D. Ratner, and C. M. Giachelli, “Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering,” Biomaterials, vol. 26, no. 31, pp. 6217–6228, 2005. View at: Google Scholar
- T. Ohki, M. Yamato, D. Murakami et al., “Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model,” Gut, vol. 55, no. 12, pp. 1704–1710, 2006. View at: Google Scholar
- R. Q. Wei, B. Tan, M. Y. Tan et al., “Grafts of porcine small intestinal submucosa with cultured autologous oral mucosal epithelial cells for esophageal repair in a canine model,” Exp Biol Med (Maywood)., vol. 234, no. 4, pp. 453–461, 2009. View at: Google Scholar
- Y. Nakase, T. Nakamura, S. Kin et al., “Intrathoracic esophageal replacement by in situ tissueengineered esophagus,” J Thorac Cardiovasc Surg., vol. 136, no. 4, pp. 850–859, 2008. View at: Google Scholar
- A. K. Saxena, H. Baumgart, C. Komann et al., “Esophagus tissue engineering: in situ generation of rudimentary tubular vascularized esophageal conduit using the ovine model,” J Pediatr Surg., vol. 45, no. 5, pp. 859–864, 2010. View at: Google Scholar
- Y. Avitzur and D. Grant, “Intestine transplantation in children: update 2010,” Pediatr Clin North Am., vol. 57, no. 2, pp. 415–431, 2010. View at: Google Scholar
- R. S. Choi and J. P. Vacanti, “Preliminary studies of tissue-engineered intestine using isolated epithelial organoid units on tubular synthetic biodegradable scaffolds,” Transplant Proc., vol. 29, no. 1-2, pp. 848–851, 1997. View at: Google Scholar
- T. C. Grikscheit, J. B. Ogilvie, E. R. Ochoa, E. Alsberg, D. Mooney, and J. P. Vacanti, “Tissue-engineered colon exhibits function in vivo,” Surgery, vol. 132, no. 2, pp. 200–204, 2002. View at: Google Scholar
- T. C. Grikscheit, A. Siddique, E. R. Ochoa et al., “Tissueengineered small intestine improves recovery after massive small bowel resection,” Ann Surg., vol. 240, no. 5, pp. 748–754, 2004. View at: Google Scholar
- F. G. Sala, S. M. Kunisaki, E. R. Ochoa, J. Vacanti, and T. C. Grikscheit, “Tissue-engineered small intestine and stomach form from autologous tissue in a preclinical large animal model,” J Surg Res., vol. 156, no. 2, pp. 205–212, 2009. View at: Google Scholar
- A. Zani, M. Cananzi, S. Eaton, A. Pierro, and P. De Coppi, “Stem cells as a potential treatment of necrotizing enterocolitis.,” J Pediatr Surg., vol. 44, no. 3, pp. 659–660, 2009. View at: Google Scholar
- A. K. Ying, D. R. Lairson, A. P. Giardino et al., “Predictors of direct costs of diabetes care in pediatric patients with type 1 diabetes,” Pediatr Diabetes, 2010, Epub ahead of print. View at: Google Scholar
- A. Mohamadi and D. W. Cooke, “Type 2 diabetes mellitus in children and adolescents,” Adolesc Med State Art Rev., vol. 21, no. 1, pp. 103–119, 2010. View at: Google Scholar
- S. Kodama, K. Kojima, S. Furuta, M. Chambers, A. C. Paz, and C. A. Vacanti, “Engineering functional islets from cultured cells,” Tissue Eng Part A., vol. 15, no. 11, pp. 3321–3329, 2009. View at: Google Scholar
- J. Dusseault, F. A. Leblond, R. Robitaille et al., “Microencapsulation of living cells in semi-permeable membranes with covalently cross-linked layers,” Biomaterials, vol. 26, no. 13, pp. 1515–1522, 2005. View at: Google Scholar
- B. Soria, E. Roche, G. Berná, T. León-Quinto, J. A. Reig, and F. Martín, “Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice,” Diabetes, vol. 49, no. 2, pp. 157–162, 2000. View at: Google Scholar
- S. Gefen-Halevi, I. H. Rachmut, K. Molakandov et al., “NKX6.1 Promotes PDX-1-Induced Liver to Pancreatic β-Cells Reprogramming,” Cell Reprogram, vol. 12, no. 6, pp. 655–664, 2010. View at: Google Scholar
- E. Pais, J. Park, T. Alexy et al., “Regulated expansion of human pancreatic beta-cells,” Mol Ther., vol. 18, no. 7, pp. 1389–1396, 2010. View at: Google Scholar
- G. H. Mao, G. A. Chen, H. Y. Bai, T. R. Song, and Y. X. Wang, “The reversal of hyperglycaemia in diabetic mice using PLGA scaffolds seeded with islet-like cells derived from human embryonic stem cells,” Biomaterials, vol. 30, no. 9, pp. 1706–1714, 2009. View at: Google Scholar
- K. Asonuma, J. C. Gilbert, J. E. Stein, T. Takeda, and J. P. Vacanti, “Quantitation of transplanted hepatic mass necessary to cure the Gunn rat model of hyperbilirubinemia,” J Pediatr Surg., vol. 27, no. 3, pp. 298–301, 1992. View at: Google Scholar
- H. C. Fiegel, U. Kneser, D. Kluth, R. Metzger, H. Till, and U. Rolle, “Development of hepatic tissue engineering,” Pediatr Surg Int., vol. 25, no. 8, pp. 667–673, 2009, Epub 2009 Jun 2. View at: Google Scholar
- J. A. Nieto, J. Escandón, C. Betancor, J. Ramos, T. Cantón, and V. Cuervas-Mons, “Evidence that temporary complete occlusion of splenic vessels prevents massive embolization and sudden death associated with intrasplenic hepatocellular transplantation,” Transplantation, vol. 47, no. 3, pp. 449–450, 1989. View at: Google Scholar
- N. Arkadopoulos, A. Papalois, T. H. Pataryas, B. Golematis, and J. Papadimitriou, “Experimental transplantation of hepatocytes in cases of toxic acute liver failure. An allograft model,” Transpl Int., vol. 7 Suppl 1, pp. S171–S174, 1994. View at: Google Scholar
- H. C. Fiegel, J. Havers, U. Kneser et al., “Influence of flow conditions and matrix coatings on growth and differentiation of three-dimensionally cultured rat hepatocytes,” Tissue Eng., vol. 10, no. 1-2, pp. 165–174, 2004. View at: Google Scholar
- H. Lee, R. A. Cusick, F. Browne et al., “Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment of hepatocytes in tissue-engineered polymer devices,” Transplantation, vol. 73, no. 10, pp. 1589–1593, 2002. View at: Google Scholar
- G. Ambrosino, S. M. Basso, S. Varotto, E. Zardi, A. Picardi, and D. F. D'Amico, “Isolated hepatocytes versus hepatocyte spheroids: in vitro culture of rat hepatocytes,” Cell Transplant., vol. 14, no. 6, pp. 397–401, 2005. View at: Google Scholar
- J. W. Allen, S. R. Khetani, and S. N. Bhatia, “In vitro zonation and toxicity in a hepatocyte bioreactor,” Toxicol Sci., vol. 84, no. 1, pp. 110–119, 2005. View at: Google Scholar
- K. Ohashi, T. Yokoyama, M. Yamato et al., “Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets,” Nat Med., vol. 13, no. 7, pp. 880–885, 2007. View at: Google Scholar
- P. Kharaziha, P. M. Hellström, B. Noorinayer et al., “Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial,” Eur J Gastroenterol Hepatol., vol. 21, no. 10, pp. 1199–1205, 2009. View at: Google Scholar
- H. Salama, A. R. Zekri, M. Zern et al., “Autologous hematopoietic stem cell transplantation in 48 patients with end-stage chronic liver diseases,” Cell Transplant., 2010, Epub ahead of print. View at: Google Scholar
- A. A. Khan, M. V. Shaik, N. Parveen et al., “Human fetal liver-derived stem cell transplantation as supportive modality in the management of end-stage decompensated liver cirrhosis,” Cell Transplant., vol. 19, no. 4, pp. 409–418, 2010. View at: Google Scholar
- J. P. Gearhart, P. C. Albertsen, F. F. Marshall, and R. D. Jeffs, “Pediatric applications of augmentation cystoplasty: the Johns Hopkins experience,” J Urol., vol. 136, no. 2, pp. 430–432, 1986. View at: Google Scholar
- T. M. Soergel, M. P. Cain, R. Misseri, T. A. Gardner, M. O. Koch, and R. C. Rink, “Transitional cell carcinoma of the bladder following augmentation cystoplasty for the neuropathic bladder,” J Urol., vol. 172, no. 4 Pt 2, pp. 1649–1651, 2004. View at: Google Scholar
- H. Tian, S. Bharadwaj, Y. Liu, P. X. Ma, A. Atala, and Y. Zhang, “Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering,” Tissue Eng Part A., vol. 16, no. 5, pp. 1769–1779, 2010. View at: Google Scholar
- A. Raya-Rivera, D. R. Esquiliano, J. J. Yoo, E. Lopez-Bayghen, S. Soker, and A. Atala, “Tissue-engineered autologous urethras for patients who need reconstruction: an observational study,” Lancet, vol. 377, no. 9772, pp. 1175–1182, 2011. View at: Google Scholar
- A. M. Kajbafzadeh, A. Elmi, S. Payabvash et al., “Transurethral autologous myoblast injection for treatment of urinary incontinence in children with classic bladder exstrophy,” J Urol., vol. 180, no. 3, pp. 1098–1105, 2008. View at: Google Scholar
- B. T. Corona, C. L. Ward, B. S. Harrison, and G. J. Christ, “Regenerative medicine: basic concepts, current status, and future applications,” J Investig Med., vol. 58, no. 7, pp. 849–858, 2010. View at: Google Scholar
- J. Tumlin, R. Wali, W. Williams et al., “Efficacy and safety of renal tubule cell therapy for acute renal failure,” J Am Soc Nephrol., vol. 19, no. 5, pp. 1034–1040, 2008. View at: Google Scholar
- E. A. Ross, M. J. Williams, T. Hamazaki et al., “Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds,” J Am Soc Nephrol., vol. 20, no. 11, pp. 2338–2347, 2009. View at: Google Scholar
- F. Tögel, A. Cohen, P. Zhang, Y. Yang, Z. Hu, and C. Westenfelder, “Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury,” Stem Cells Dev., vol. 18, no. 3, pp. 475–485, 2009. View at: Google Scholar
- C. B. Huddleston, J. B. Bloch, S. C. Sweet, M. de la Morena, G. A. Patterson, and E. N. Mendeloff, “Lung transplantation in children,” Ann Surg., vol. 236, no. 3, pp. 270–276, 2002. View at: Google Scholar
- T. H. Petersen, E. A. Calle, L. Zhao et al., “Tissue-engineered lungs for in vivo implantation,” Science, vol. 329, no. 5991, pp. 538–541, 2010. View at: Google Scholar
- U. Frohberg and J. B. Mazock, “A review of morbidity associated with bone harvest from the proximal tibial metaphysis,” Mund Kiefer Gesichtschir., vol. 9, no. 2, pp. 63–65, 2005. View at: Google Scholar
- J. A. Goulet, L. E. Senunas, G. L. DeSilva, and M. L. Greenfield, “Autogenous iliac crest bone graft. Complications and functional assessment,” Clin Orthop Relat Res., no. 339, pp. 76–81, 1997. View at: Google Scholar
- J. C. Banwart, M. A. Asher, and R. S. Hassanein, “Iliac crest bone graft harvest donor site morbidity. A statistical evaluation,” Spine (Phila Pa 1976), vol. 20, no. 9, pp. 1055–1060, 1995. View at: Google Scholar
- K. Urabe, M. Itoman, Y. Toyama et al., “Current trends in bone grafting and the issue of banked bone allografts based on the fourth nationwide survey of bone grafting status from 2000 to 2004,” J Orthop Sci., vol. 12, no. 6, pp. 520–525, 2007. View at: Google Scholar
- M. P. Bostrom and D. A. Seigerman, “The clinical use of allografts, demineralized bone matrices, synthetic bone graft substitutes and osteoinductive growth factors: a survey study,” HSS J., vol. 1, no. 1, pp. 9–18, 2005. View at: Google Scholar
- H. Nguyen, D. A. Morgan, and M. R. Forwood, “Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics,” Cell Tissue Bank., vol. 8, no. 2, pp. 93–105, 2007. View at: Google Scholar
- A. Uchida, N. Araki, Y. Shinto, H. Yoshikawa, E. Kurisaki, and K. Ono, “The use of calcium hydroxyapatite ceramic in bone tumour surgery,” J Bone Joint Surg Br., vol. 72, no. 2, pp. 298–302, 1990. View at: Google Scholar
- M. Fini, G. Giavaresi, P. Torricelli et al., “Biocompatibility and osseointegration in osteoporotic bone,” J Bone Joint Surg Br., vol. 83, no. 1, pp. 139–143, 2001. View at: Google Scholar
- M. Marcacci, E. Kon, V. Moukhachev et al., “Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study,” Tissue Eng., vol. 13, no. 5, pp. 947–955, 2007. View at: Google Scholar
- M. Evangelista, M. Soncini, and O. Parolini, “Placenta-derived stem cells: new hope for cell therapy?” Cytotechnology, vol. 58, no. 1, pp. 33–42, 2008. View at: Google Scholar
- R. S. Langer and J. P. Vacanti, “Tissue engineering: the challenges ahead,” Sci Am., vol. 280, no. 4, pp. 86–89, 1999. View at: Google Scholar
- S. M. Oliveira, I. F. Amaral, M. A. Barbosa, and C. C. Teixeira, “Engineering endochondral bone: in vitro studies,” Tissue Eng Part A., vol. 15, no. 3, pp. 625–634, 2009. View at: Google Scholar
- S. M. van Gaalen, W. J. Dhert, A. van den Muysenberg et al., “Bone tissue engineering for spine fusion: an experimental study on ectopic and orthotopic implants in rats,” Tissue Eng., vol. 10, no. 1-2, pp. 231–239, 2004. View at: Google Scholar
- S. P. Bruder, K. H. Kraus, V. M. Goldberg, and S. Kadiyala, “The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects,” J Bone Joint Surg Am., vol. 80, no. 7, pp. 985–996, 1998. View at: Google Scholar
- E. Kon, A. Muraglia, A. Corsi et al., “Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones,” J Biomed Mater Res., vol. 49, no. 3, pp. 328–337, 2000. View at: Google Scholar
- L. Zhu, W. Liu, L. Cui, and Y. Cao, “Tissue-engineered bone repair of goat-femur defects with osteogenically induced bone marrow stromal cells,” Tissue Eng., vol. 12, no. 3, pp. 423–433, 2006. View at: Google Scholar
- J. Fiedler, G. Röderer, K. P. Günther, and R. E. Brenner, “BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells,” J Cell Biochem., vol. 87, no. 3, pp. 305–312, 2002. View at: Google Scholar
- P. C. Kreuz, M. R. Steinwachs, C. Erggelet et al., “Results after microfracture of full-thickness chondral defects in different compartments in the knee,” Osteoarthritis Cartilage, vol. 14, no. 11, pp. 1119–1125, 2006. View at: Google Scholar
- M. Plainfossé, P. V. Hatton, A. Crawford, Z. M. Jin, and J. Fisher, “Influence of the extracellular matrix on the frictional properties of tissue-engineered cartilage,” Biochem Soc Trans., vol. 35, Pt 4, pp. 677–679, 2007. View at: Google Scholar
- T. Fujisato, T. Sajiki, Q. Liu, and Y. Ikada, “Effect of basic fibroblast growth factor on cartilage regeneration in chondrocyte-seeded collagen sponge scaffold,” Biomaterials, vol. 17, no. 2, pp. 155–162, 1996. View at: Google Scholar
- W. J. Li, K. G. Danielson, P. G. Alexander, and R. S. Tuan, “Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds,” J Biomed Mater Res A., vol. 67, no. 4, pp. 1105–1114, 2003. View at: Google Scholar
- V. F. Sechriest, Y. J. Miao, C. Niyibizi et al., “GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis,” J Biomed Mater Res., vol. 49, no. 4, pp. 534–541, 2000. View at: Google Scholar
- D. C. Crawford, C. M. Heveran, W. D. Cannon Jr., L. F. Foo, and H. G. Potter, “An autologous cartilage tissue implant NeoCart for treatment of grade III chondral injury to the distal femur: prospective clinical safety trial at 2 years,” Am J Sports Med., vol. 37, no. 7, pp. 1334–1343, 2009. View at: Google Scholar
- K. Pelttari, A. Wixmerten, and I. Martin, “Do we really need cartilage tissue engineering?” Swiss Med Wkly., vol. 139, no. 41-42, pp. 602–609, 2009. View at: Google Scholar
- A. D. Rapidis and T. A. Day, “The use of temporal polyethylene implant after temporalis myofascial flap transposition: clinical and radiographic results from its use in 21 patients,” J Oral Maxillofac Surg., vol. 64, no. 1, pp. 12–22, 2006. View at: Google Scholar
- N. Holzer, S. Hogendoorn, L. Zürcher et al., “Autologous transplantation of porcine myogenic precursor cells in skeletal muscle,” Neuromuscul Disord., vol. 15, no. 3, pp. 237–244, 2005. View at: Google Scholar
- A. K. Saxena, J. Marler, M. Benvenuto, G. H. Willital, and J. P. Vacanti, “Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies,” Tissue Eng., vol. 5, no. 6, pp. 525–532, 1999. View at: Google Scholar
- S. Carnio, E. Serena, C. A. Rossi, P. De Coppi, N. Elvassore, and L. Vitiello, “Three-dimensional porous scaffold allows long-term wild-type cell delivery in dystrophic muscle,” J Tissue Eng Regen Med., 2010, Epub ahead of print. View at: Google Scholar
- S. A. Riboldi, N. Sadr, L. Pigini et al., “Skeletal myogenesis on highly orientated microfibrous polyesterurethane scaffolds,” J Biomed Mater Res A., vol. 84, no. 4, pp. 1094–1101, 2008. View at: Google Scholar
- M. Flaibani, L. Boldrin, E. Cimetta, M. Piccoli, P. De Coppi, and N. Elvassore, “Muscle differentiation and myotubes alignment is influenced by micropatterned surfaces and exogenous electrical stimulation,” Tissue Eng Part A., vol. 15, no. 9, pp. 2447–2457, 2009. View at: Google Scholar
- D. O. Fauza, J. J. Marler, R. Koka, R. A. Forse, J. E. Mayer, and J. P. Vacanti, “Fetal tissue engineering: diaphragmatic replacement,” J Pediatr Surg., vol. 36, no. 1, pp. 146–151, 2001. View at: Google Scholar
- V. Puisto, S. Kääriäinen, A. Impinen et al., “Incidence of spinal and spinal cord injuries and their surgical treatment in children and adolescents: a population-based study,” Spine (Phila Pa 1976), vol. 35, no. 1, pp. 104–107, 2010. View at: Google Scholar
- N. Uzun, T. Tanriverdi, F. K. Savrun et al., “Traumatic peripheral nerve injuries: demographic and electrophysiologic findings of 802 patients from a developing country,” J Clin Neuromuscul Dis., vol. 7, no. 3, pp. 97–103, 2006. View at: Google Scholar
- S. E. Kenny, P. K. Tam, and M. Garcia-Barcelo, “Hirschsprung's disease,” Semin Pediatr Surg., vol. 19, no. 3, pp. 194–200, 2010. View at: Google Scholar
- T. C. C. Kao and L. W. Chang, “The mechanism of spinal cord cavitation following spinal cord transection,” J Neurosurg., vol. 46, no. 2, pp. 197–209, 1977. View at: Google Scholar
- D. Shaw and M. S. Shoichet, “Toward spinal cord injury repair strategies: peptide surface modification of expanded poly(tetrafluoroethylene) fibers for guided neurite outgrowth in vitro,” J Craniofac Surg., vol. 14, no. 3, pp. 308–316, 2003. View at: Google Scholar
- T. Scholz, A. Krichevsky, A. Sumarto et al., “Peripheral nerve injuries: an international survey of current treatments and future perspectives,” J Reconstr Microsurg., vol. 25, no. 6, pp. 339–344, 2009. View at: Google Scholar
- Q. Li, P. Ping, H. Jiang, and K. Liu, “Nerve conduit filled with GDNF gene-modified Schwann cells enhances regeneration of the peripheral nerve,” Microsurgery, vol. 26, no. 2, pp. 116–121, 2006. View at: Google Scholar
- C. Radtke, A. A. Aizer, S. K. Agulian, K. L. Lankford, P. M. Vogt, and J. D. Kocsis, “Transplantation of olfactory ensheathing cells enhances peripheral nerve regeneration after microsurgical nerve repair,” Brain Res., vol. 1254, pp. 10–17, 2009. View at: Google Scholar
- Y. Shi, L. Zhou, J. Tian, and Y. Wang, “Transplantation of neural stem cells overexpressing glia-derived neurotrophic factor promotes facial nerve regeneration,” Acta Otolaryngol., pp. 1–9, 2008. View at: Google Scholar
- G. Keilhoff, A. Goihl, K. Langnäse, H. Fansa, and G. Wolf, “Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells,” Eur J Cell Biol., vol. 85, no. 1, pp. 11–24, 2006. View at: Google Scholar
- K. L. Lankford, T. Imaizumi, O. Honmou, and J. D. Kocsis, “A quantitative morphometric analysis of rat spinal cord remyelination following transplantation of allogenic Schwann cells,” J Comp Neurol., vol. 443, no. 3, pp. 259–274, 2002. View at: Google Scholar
- S. Madduri and B. Gander, “Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration,” J Peripher Nerv Syst., vol. 15, no. 2, pp. 93–103, 2010. View at: Google Scholar
- E. Goto, M. Mukozawa, H. Mori, and M. Hara, “A rolled sheet of collagen gel with cultured Schwann cells: model of nerve conduit to enhance neurite growth,” J Biosci Bioeng., vol. 109, no. 5, pp. 512–518, 2010. View at: Google Scholar
- J. H. Huang, D. K. Cullen, K. D. Browne et al., “Long-term survival and integration of transplanted engineered nervous tissue constructs promotes peripheral nerve regeneration,” Tissue Eng Part A., vol. 15, no. 7, pp. 1677–1685, 2009. View at: Google Scholar
- A. Iwata, K. D. Browne, B. J. Pfister, J. A. Gruner, and D. H. Smith, “Long-term survival and outgrowth of mechanically engineered nervous tissue constructs implanted into spinal cord lesions,” Tissue Eng., vol. 12, no. 1, pp. 101–110, 2006. View at: Google Scholar
- R. Jandial and E. Y. Snyder, “A safer stem cell: on guard against cancer,” Nat Med., vol. 15, no. 9, pp. 999–1001, 2009. View at: Google Scholar
- J. Alper, “Geron gets green light for human trial of ES cell-derived product,” Nat Biotechnol., vol. 27, no. 3, pp. 213–214, 2009. View at: Google Scholar
- Y. W. Zhang, J. Denham, and R. S. Thies, “Oligodendrocyte progenitor cells derived from human embryonic stem cells express neurotrophic factors,” Stem Cells Dev., vol. 15, no. 6, pp. 943–952, 2006. View at: Google Scholar
- S. G. Priya, H. Jungvid, and A. Kumar, “Skin tissue engineering for tissue repair and regeneration,” Tissue Eng Part B Rev., vol. 14, no. 1, pp. 105–118, 2008. View at: Google Scholar
- Y. Kuroyanagi, M. Kenmochi, S. Ishihara et al., “Acultured skin substitute composed of fibroblasts and keratinocytes with a collagen matrix: preliminary results of clinical trials,” Ann Plast Surg., vol. 31, no. 4, pp. 340–349, 1993. View at: Google Scholar
- M. Blais, M. Grenier, and F. Berthod, “Improvement of nerve regeneration in tissue-engineered skin enriched with schwann cells,” J Invest Dermatol., vol. 129, no. 12, pp. 2895–2900, 2009. View at: Google Scholar
- B. Hendrickx, J. J. Vranckx, and A. Luttun, “Cell-Based Vascularization Strategies for Skin Tissue Engineering,” Tissue Eng Part B Rev., 2010, Epub ahead of print. View at: Google Scholar
- S. T. Nillesen, G. Lammers, R. G. Wismans et al., “Design and in vivo evaluation of a molecularly defined acellular skin construct: Reduction of early contraction and increase in early blood vessel formation,” Acta Biomater., 2010, Epub ahead of print. View at: Google Scholar
- J. Jim, M. J. Leonardi, H. G. Cryer et al., “Management of high-grade splenic injury in children,” Am Surg., vol. 74, no. 10, pp. 988–992, 2008. View at: Google Scholar
- M. H. Kyaw, E. M. Holmes, F. Toolis et al., “Evaluation of severe infection and survival after splenectomy,” Am J Med., vol. 119, no. 3, pp. 276.e1–276.e7, 2006. View at: Google Scholar
- V. Velanovich and D. Tapper, “Decision analysis in children with blunt splenic trauma: the effects of observation, splenorrhaphy, or splenectomy on quality-adjusted life expectancy,” J Pediatr Surg., vol. 28, no. 2, pp. 179–185, 1993. View at: Google Scholar
- T. C. Grikscheit, F. G. Sala, J. Ogilvie et al., “Tissueengineered spleen protects against overwhelming pneumococcal sepsis in a rodent model,” J Surg Res., vol. 149, no. 2, pp. 214–218, 2008. View at: Google Scholar
- C. Giese, C. D. Demmler, R. Ammer et al., “Ahuman lymph node in vitro - challenges and progress,” Artif Organs., vol. 30, pp. 803–808, 2006. View at: Google Scholar
- S. Suematsu and T. Watanabe, “Generation of a synthetic lymphoid tissue-like organoid in mice,” Nat Biotechnol., vol. 22, no. 12, pp. 1539–1545, 2004. View at: Google Scholar
- T. Hitchcock and L. Niklason, “Lymphatic tissue engineering: progress and prospects,” Ann N Y Acad Sci., vol. 1131, pp. 44–49, 2008. View at: Google Scholar
Copyright
Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.