Journal of Healthcare Engineering

Journal of Healthcare Engineering / 2013 / Article

Research Article | Open Access

Volume 4 |Article ID 740526 | https://doi.org/10.1260/2040-2295.4.2.223

Yufeng Zhou, "Ultrasound-Mediated Drug/Gene Delivery in Solid Tumor Treatment", Journal of Healthcare Engineering, vol. 4, Article ID 740526, 32 pages, 2013. https://doi.org/10.1260/2040-2295.4.2.223

Ultrasound-Mediated Drug/Gene Delivery in Solid Tumor Treatment

Received01 Jul 2012
Accepted01 Dec 2012

Abstract

Ultrasound is an emerging modality for drug delivery in chemotherapy. This paper reviews this novel technology by first introducing the designs and characteristics of three classes of drug/gene vehicles, microbubble (including nanoemulsion), liposomes, and micelles. In comparison to conventional free drug, the targeted drug-release and delivery through vessel wall and interstitial space to cancerous cells can be activated and enhanced under certain sonication conditions. In the acoustic field, there are several reactions of these drug vehicles, including hyperthermia, bubble cavitation, sonoporation, and sonodynamics, whose physical properties are illustrated for better understanding of this approach. In vitro and in vivo results are summarized, and future directions are discussed. Altogether, ultrasound-mediated drug/gene delivery under imaging guidance provides a promising option in cancer treatment with enhanced agent release and site specificity and reduced toxicity.

References

  1. N. Howlader, A. M. Noone, M. Krapchom et al., “SEER cancer statistics review,” National Cancer Institute, pp. 1975–2008, 2011. View at: Google Scholar
  2. B. D. Curti, “Physical barriers to drug delivery in tumors,” in Cancer Chemotherapy and Biotherapy, A. B. Chabner, Ed., pp. 709–719, 1996. View at: Google Scholar
  3. R. K. Jain, “Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy,” Science, vol. 307, pp. 58–62, 2005. View at: Google Scholar
  4. Y. Boucher, L. T. Baxter, and R. K. Jain, “Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy,” Cancer Res., vol. 50, pp. 4478–4484, 1990. View at: Google Scholar
  5. T. D. McKee, P. Grandi, W. Mok et al., “Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector,” Cancer Res., vol. 6, pp. 2509–2513, 2006. View at: Google Scholar
  6. A. Awada and M. Piccart, “Strategies offering protection from the toxic effects of anticancer treatments with a focus on chemoprotective agents,” Curr. Opin. Oncol., vol. 12, pp. 289–296, 2000. View at: Google Scholar
  7. J. D. Floyd, D. T. Nguyen, R. L. Lobins, Q. Bashir, D. C. Doll, and M. C. Perry, “ Cardiotoxicity of cancer therapy,” J. Clin. Oncol., vol. 23, pp. 7685–7696, 2005. View at: Google Scholar
  8. I. Briggers, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Advanced Drug Delivery Reviews, vol. 54, pp. 631–651, 2012. View at: Google Scholar
  9. S. Hernot and A. L. Klibanov, “Microbubbles in ultrasound-triggered drug and gene delivery,” Advanced Drug Delivery Reviews, vol. 60, pp. 1153–1166, 2008. View at: Google Scholar
  10. F. W. Kremkau, J. S. Kaufmann, M. M. Walke, P. G. Burch, and C. L. Spurr, “Ultrasonic enhancement of nitrogen mustard cytotoxicity in mouse leukemia,” Cancer, vol. 37, pp. 1643–1647, 1976. View at: Google Scholar
  11. G. ter Haar, “Ultrasound mediated drug delivery: A 21st century phoenix?” International journal of hyperthermia: the official journal of European Society For Hyperthermic Oncology, North American Hyperthermia Group, vol. 28, no. 4:279, 2012. View at: Google Scholar
  12. M. Postema and O. H. Gilja, “Ultrasound-directed drug delivery,” Current pharmaceutical biotechnology, vol. 8, no. 6, pp. 355–361, 2007. View at: Google Scholar
  13. K. Tachibana and S. Tachibana, “The use of ultrasound for drug delivery,” Echocardiography, vol. 18, no. 4, pp. 323–328, 2003. View at: Google Scholar
  14. M. J. Shortencarier, P. A. Dayton, S. H. Bloch, P. A. Schumann, T. O. Matsunaga, and K. W. Ferrara, “A method for radiation-force localized drug delivery using gas-filled liposomes,” IEEE transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 51, pp. 822–831, 2004. View at: Google Scholar
  15. D. Cosgrove, “Ultrasound contrast agents: an overview,” European Journal of Radiology, vol. 60, no. 3, pp. 324–330, 2006. View at: Google Scholar
  16. M. S. Dolan, S. S. Gala, S. Dodla et al., “Safety and efficacy of commercially available ultrasound contrast agents for rest and stress echocardiography: a multicenter experience,” Journal of the American College of Cardiology, vol. 53, no. 1, pp. 32–38, 2009. View at: Google Scholar
  17. K. Ferrara, R. Pollard, and M. Borden, “Ultrasound microbubble contrast agents: fundamentals and applications to gene and drug delivery,” Annual Review of Biomedical Engineering, vol. 9, pp. 415–447, 2007. View at: Google Scholar
  18. A. L. Klibanov, “Microbubble contrast agents: targeted ultraound imaging and ultrasound-assisted drug-delivery applications,” Investigative Radiology, vol. 41, no. 3, pp. 354–362, 2006. View at: Google Scholar
  19. E. C. Unger, T. O. Matsunaga, T. McCreery, P. Schumann, R. Sweitzer, and R. Quigley, “Therapeutic applications of microbubbles,” European Journal of Radiology, vol. 42, pp. 160–168, 2002. View at: Google Scholar
  20. E. C. Unger, E. Hersh, M. Vannan, T. O. Matsunaga, and T. McCreery, “Local drug and gene delivery through microbubbles,” Progress in Cardiovascular Diseases, vol. 44, no. 1, pp. 45–54, 2001. View at: Google Scholar
  21. E. C. Unger, T. P. McCreery, R. H. Sweitzer, V. E. Caldwell, and Y. Wu, “Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent,” Investigative Radiology, vol. 33, no. 12:886, 1998. View at: Google Scholar
  22. I. Lentacker, S. C. De Smedt, and N. N. Sanders, “Drug loaded microbubble design for ultrasound triggered delivery,” Soft Matter, vol. 5, pp. 2161–2170, 2009. View at: Google Scholar
  23. A. L. Klibanov, “Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging,” Advanced Drug Delivery Reviews, vol. 37, pp. 139–157, 1999. View at: Google Scholar
  24. F. S. Villanueva, R. J. Jankowski, S. Klibanov et al., “Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells,” Circulation, vol. 98, pp. 1–5, 1998. View at: Google Scholar
  25. G. E. Weller, E. Lu, M. M. Csikari et al., “Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1,” Circulation, vol. 108, pp. 218–224, 2003. View at: Google Scholar
  26. G. E. Weller, M. K. Wong, R. A. Modzelewski et al., “Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine,” Cancer Res, vol. 65, pp. 533–539, 2005. View at: Google Scholar
  27. P. Hauff, M. Reinhardt, A. Briel, N. Debus, and M. Schirner, “Molecular targeting of lymph nodes with L-selectin lignad-specific us contrast agent: a feasibility study in mice and dogs,” Radiology, vol. 231, pp. 667–673, 2004. View at: Google Scholar
  28. P. A. Schumann, J. P. Christiansen, R. M. Quigley et al., “Targeted-microbubble binding selectively to GPIIb IIIa receptors of platelet thrombi,” Invest. Radiol., vol. 37, pp. 587–593, 2002. View at: Google Scholar
  29. G. E. Weller, F. S. Villanueva, E. M. Tom, and W. R. Wagner, “Targeted ultrasound contrast agents: in vitro assessment of endothelial dysfunction and multi-targeting to ICAM-1 and sialyl Lewis,” Biotechnol. Bioeng., vol. 92, pp. 780–788, 2005. View at: Google Scholar
  30. M. A. Borden, M. R. Sarantos, S. M. Stieger, S. I. Simon, K. W. Ferrara, and P. A. Dayton, “Ultrasound radiation force modulates ligand availability on targeted contrast agents,” Molecular Imaging, vol. 5, pp. 139–147, 2006. View at: Google Scholar
  31. N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K.-H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Controlled Release, vol. 138, pp. 268–276, 2009. View at: Google Scholar
  32. R. Campbell, “Tumor physiology and delivery of nanopharmaceuticals,” Ant Canc. Agents Med. Chem., vol. 6, no. 6, pp. 503–512, 2006. View at: Google Scholar
  33. N. Reznik, R. Williams, and P. N. Burns, “Investigation of vaporized submicron perfluorocarbon droplets as an ultrasound contrast agent,” Ultrasound in Medicine and Bilogy, vol. 37, no. 8, pp. 1271–1279, 2011. View at: Google Scholar
  34. P. Zhang and T. Porter, “An in vitro of a phase-shift nanoemulsion: A potential nucleation agent for bubble-enhanced HIFU tumor ablation,” Ultrasound in Medicine & Biology, vol. 36, no. 11, pp. 1856–1866, 2010. View at: Google Scholar
  35. S. L. Huang, “Liposomes in ultrasonic drug and gene delivery,” Advanced Drug Delivery Reviews, vol. 60, no. 10, pp. 1167–1176, 2008. View at: Google Scholar
  36. A. Schroeder, J. Kost, and y. Barenholz, “Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes,” Chemistry and Physics of Lipids, vol. 162, pp. 1–16, 2009. View at: Google Scholar
  37. T. M. Allen, “Liposomes: opportunities in drug delivery,” Drugs, vol. 54, pp. 8–14, 1997. View at: Google Scholar
  38. M. R. Ranson, J. Carmichael, K. O'Byrne, S. Stewart, D. Smith, and A. Hwell, “Treatment of advanced breast cancer with sterically stabilized liposomal doxorubicin: results of a multicenter phase II trial,” J. Clin. Oncol., vol. 15, pp. 3185–3191, 1997. View at: Google Scholar
  39. A. Gasselhuber, M. R. Dreher, A. Partanen et al., “Targeted drug delivery by high intensity focused ultrasound mediated hyperthermia combined with temperature-sensitive liposomes: Computational modelling and preliminary in vivo validation,” International Journal of Hyperthermia, vol. 28, no. 4, pp. 337–348, 2012. View at: Google Scholar
  40. A. Chilkoti, M. R. Dreher, D. E. Meyer, and D. Raucher, “Targeted drug delivery by thermally responsive polymers.,” Advanced Drug Delivery Reviews, vol. 54, pp. 613–630, 2002. View at: Google Scholar
  41. K. W. Ferrara, M. A. B, and H. Zhang, “Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery,” Accounts of Chemical Research, vol. 42, no. 7, pp. 881–892, 2009. View at: Google Scholar
  42. S. L. Huang and R. C. MacDonald, “Acoustically active liposomes for drug encapsulation and ultrasound-triggered release,” Biochimica Et Biophysica Acta, vol. 1665, pp. 134–141, 2004. View at: Google Scholar
  43. A. Kheirolomoom, P. A. Dayton, A. F. H. Lum et al., “Acoustically-active microbubbles conjugated to liposomes: characterization of a proposed drug delivery vehicle,” Journal of Controlled Release, vol. 118, pp. 275–284, 2007. View at: Google Scholar
  44. Y. Endo-Takahashi, Y. Negishi, Y. Kato, R. Suzuki, K. Maruyama, and Y. Aramaki, “Efficient siRNA delivery using novel siRNA-loaded bubble liposomes and ultrasound,” Int. J. Pharm., vol. 422, no. 1-2, pp. 504–509, 2012. View at: Google Scholar
  45. Y. Negishi, Y. Endo-Takahashi, Y. Matsuki et al., “Systemic delivery systems of angiogenic gene by novel bubble liposomes containing cationic lipid and ultrasound exposure,” Mol. Pharm., vol. 9, no. 6, pp. 1834–1840, 2012. View at: Google Scholar
  46. A. F. H. Lum, M. A. B., P. A. Dayton, D. E. Kruse, S. I. Simon, and K. W. Ferrara, “Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles,” J. Controlled Release, vol. 111, pp. 128–134, 2006. View at: Google Scholar
  47. N. Rapoport, “Combined cancer therapy by micellar-encapsulated drug and ultrasound,” International Journal of Pharmaceutics, vol. 277, pp. 155–162, 2004. View at: Google Scholar
  48. N. Rapoport, “Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery,” Progress in Polymer Science, vol. 32, pp. 962–990, 2007. View at: Google Scholar
  49. A. Marin, H. Sun, G. A. Husseini, W. G. Pitt, D. A. Christensen, and N. Y. Rapoport, “Drug delivery in pluronic micelles: effect of high-frequency ultrasound on drug release from micelles and intracellular uptake,” Journal of Controlled Release, vol. 84, no. 1, pp. 39–47, 2002. View at: Google Scholar
  50. C. P. L. Wan, J. K. Jackson, F. N. Pirmoradi, M. Chiao, and H. M. Burt, “Increased accumulation and retention of micellar paclitaxel in drug-sensitive and P-Glycoprotein-expressing cell lines following ultrasound exposure,” Ultrasound in medicine & biology, vol. 38, no. 5, pp. 736–744, 2012. View at: Google Scholar
  51. N. Rapoport, “Ultrasound-mediated micellar drug delivery,” International Journal of Hyperthermia, vol. 28, no. 4, pp. 374–385, 2012. View at: Google Scholar
  52. P. A. Dijkmans, L. J. Juffermans, R. J. Musters et al., “Microbubbles and ultrasound: from diagnosis to therapy,” European Journal of Echocardiography, vol. 5, pp. 245–256, 2004. View at: Google Scholar
  53. G. ter Haar, “Therapeutic ultrasound,” European Journal of Ultrasound, vol. 9, no. 1, pp. 3–9, 1999. View at: Google Scholar
  54. S. Umemura, K. Kawabata, K. Sasaki, N. Yumita, K. Umemura, and R. Nishigaki, “Recent advances in sonodynamic approach to cancer therapy,” Ultrasonics Sonochemistry, vol. 3, pp. S187–S191, 1996. View at: Google Scholar
  55. K. Y. Ng and Y. Liu, “Therapeutic ultrasound: its application in drug delivery,” Medicinal Research Reviews, vol. 22, no. 2, pp. 204–223, 2002. View at: Google Scholar
  56. J. J. Rychak, A. L. Klibanov, K. F. Ley, and J. A. Hossack, “Enhanced targeting of ultrasound contrast agents using acoustic radiation force,” Ultrasound in Medicine & Biology, vol. 33, no. 7, pp. 1132–1139, 2007. View at: Google Scholar
  57. V. Frenkel, “Ultrasound mediated delivery of drugs and genes to solid tumors,” Adv. Drug Deliv. Rev., vol. 60, pp. 1193–1208, 2008. View at: Google Scholar
  58. B. Billard, K. Hynynen, and R. Roemer, “Effects of physical parameters on high temperature ultrasound hyperthermia,” Ultrasound in medicine & biology, vol. 16, no. 4, pp. 409–420, 1990. View at: Google Scholar
  59. A. Partanen, P. S. Yarmolenko, A. Viitala et al., “Mild hyperthermia with magnetic resonance-guided high-intensity focused ultrasound for applications in drug delivery,” International Journal of Hyperthermia, vol. 28, no. 4, pp. 320–336, 2012. View at: Google Scholar
  60. J. E. Chomas, P. Dayton, J. Allen, K. Morgan, and K. W. Ferrara, “Optical observation of contrast agent destruction,” Appl. Phys. Lett., vol. 77, pp. 1056–1058, 2000. View at: Google Scholar
  61. J. E. Chomas, P. A. Dayton, D. May, J. Allen, K. Klibanov, and K. W. Ferrara, “Optical observation of contrast agent destruction,” Appl. Phys. Lett., vol. 77, pp. 1056–1058, 2000. View at: Google Scholar
  62. P. Marmottant, S. v. d. Meer, M. Emmer et al., “A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture,” J. Acous. Soc. Am., vol. 118, no. 6, pp. 3499–3505, 2005. View at: Google Scholar
  63. C. E. Brennen, Cavitation and bubble dynamics, Oxford University Press, USA, 1995.
  64. V. Sboros, “Response of contrast agents to ultrasound,” Advanced Drug Delivery Reviews, vol. 60, no. 10, pp. 1117–1136, 2008. View at: Google Scholar
  65. K. W. Ferrara, “Driving delivery vehicles with ultrasound,” Advanced Drug Delivery Reviews, vol. 60, pp. 1097–1102, 2008. View at: Google Scholar
  66. E. Kimmel, “Cavitation bioeffects.,” Critical reviews in biomedical engineering, vol. 34, no. 2:105, 2006. View at: Google Scholar
  67. M. W. Miller, D. L. Miller, and A. A. Brayman, “A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective,” Ultrasound in Medicine & Biology, vol. 22, no. 9, pp. 1131–1154, 1996. View at: Google Scholar
  68. K. E. Morgan, J. E. Allen, P. A. Dayton, J. E. Chomas, A. L. Klibaov, and K. W. Ferrara, “Experimental and theoretical evaluaiton of microbubble behavior: effect of transmitted phase and bubble size,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 47, no. 6, pp. 1494–1509, 2000. View at: Google Scholar
  69. K. S. Suslick, “Sonochemistry,” Science, vol. 247, no. 4949, pp. 1439–1445, 1990. View at: Google Scholar
  70. I. Larina, B. Evers, C. Bartels, T. Ashitkov, K. Larin, and R. Esenaliev, “Ultrasound-enhanced drug delivery for efficient cancer therapy,” vol. 1, pp. 1:492–493, 2002. View at: Google Scholar
  71. S. Mehier-Humbert, T. Bettinger, F. Yan, and R. H. Guy, “Plasma membrane poration induced by ultrasound exposure: implication for drug delivery,” Journal of Controlled Release, vol. 104, pp. 213–222, 2005. View at: Google Scholar
  72. D. L. Miller, S. V. Pislaru, and J. F. Greenleaf, “Sonoporation: mechanical DNA delivery by ultrasonic cavitation,” Somatic cell and molecular enetics, vol. 27, no. 1, pp. 115–134, 2002. View at: Google Scholar
  73. D. L. Miller and J. Quddus, “Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies,” Ultrasound in medicine & biology, vol. 26, no. 4, pp. 661–667, 2000. View at: Google Scholar
  74. C. D. Ohl, M. Arora, R. Ikink et al., “Sonoporation from jetting cavitation bubbles,” Biophysical Journal, vol. 91, no. 11, pp. 4285–4295, 2006. View at: Google Scholar
  75. Y. Qiu, Y. Luo, Y. Zhang et al., “The correlation between acoustic cavitation and sonoporation involved in ultrasound-mediated DNA transfection with polyethylenimine (PEI) in vitro,” Journal of Controlled Release, vol. 145, pp. 40–48, 2010. View at: Google Scholar
  76. M. Ward, J. Wu, and J. F. Chiu, “Experimental study of the effects of optison® concentration on sonoporation in vitro.,” Ultrasound in Medicine & Biology, vol. 26, no. 7, pp. 1169–1175, 2000. View at: Google Scholar
  77. M. Kuroki, K. Hachimine, H. Abe et al., “Sonodynamic therapy of cancer using novel sonosensitizers,” Anticancer Research, vol. 27, no. 6A, pp. 3673–3677, 2007. View at: Google Scholar
  78. N. Yumita, R. Nishigaki, K. Umemura et al., “Sonochemical activation of Hematoporphyrin: an ESR study,” Radiation Res., vol. 138, pp. 171–176, 1994. View at: Google Scholar
  79. I. V. Larina, B. M. Evers, T. V. Ashitkov, C. Bartels, K. V. VLarin, and R. O. Esenaliev, “. Enhancement of drug delivery in tumors by using interaction of nanoparticles with ultrasound radiation,” Technology in Cancer Research & Treatment, vol. 4, no. 2, pp. 217–226, 2005. View at: Google Scholar
  80. I. V. Larina, B. M. Evers, and R. O. Esenaliev, “Optimal drug and gene delivery in cancer cells by ultrasound-induced cavitation,” Anticancer Research, vol. 25, pp. 149–156, 2005. View at: Google Scholar
  81. J. A. Kopechek, E. Park, C.-S. Mei, N. J. McDannold, and T. M. Porter, “Accumulation of phase-shift nanoemulsions to enhance MR-guided ultrasound-mediated tumor ablation in vivo,” Journal of Healthcare Engineering, vol. 4, no. 1, pp. 109–126, 2013. View at: Google Scholar
  82. M. S. Tartis, D. E. Kruse, H. R. Zheng et al., “Dynamic microPET imaging of ultrasound contrast agents and lipid delivery,” J. Controlled Release, vol. 131, pp. 160–166, 2008. View at: Google Scholar
  83. S. Dromi, V. Frenkel, A. Luk et al., “Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect,” Clin. Cancer Res., vol. 13, no. 9, pp. 2722–2727, 2007. View at: Google Scholar
  84. K. Kataoka, T. Matsumoto, M. Yokoyama, T. Okano, Y. Sakurai, and S. Fukushima, “Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance,” J. Control Release, vol. 64, pp. 143–153, 2000. View at: Google Scholar
  85. G. A. Husseini, G. Myrup, W. G. Pitt, D. A. Christensen, and N. Rapoport, “Factors affecting acoustically triggered release of drugs from polymeric micelles,” J. Controlled Release, vol. 69, pp. 43–52, 2000. View at: Google Scholar
  86. N. Rapoport, A. Marin, Y. Luo, G. Prestwich, and M. Muniruzzaman, “Intracellular uptake and trafficking of pluronic micelles in drug-sensitive and MDR cells: effect on the intracellular drug localization,” J. Pharm. Sci., vol. 91, pp. 157–170, 2002. View at: Google Scholar
  87. N. Munshi, N. Rapoport, and W. G. Pitt, “Ultrasonic activated drug delivery from Pluronic P-105 micelles,” Cancer Letters, vol. 118, pp. 13–19, 1997. View at: Google Scholar
  88. W. J. Greenleaf, M. E. Bolander, G. Sarkar, M. B. Goldring, and J. F. Greenleaf, “Artificial cavitation nuclei significantly enhance acoustically induced cell transfection,” Ultrasound in Medicine & Biology, vol. 24, pp. 587–595, 1998. View at: Google Scholar
  89. T. Uchida, K. Tachibana, S. Hisano, and E. Morioka, “Elimination of adult T cell leukemia cells by ultrasound in the presence of porfimer sodium,” Anti-Cancer Drugs, vol. 8, no. 4, pp. 329–335, 1997. View at: Google Scholar
  90. Z. Xing, J. Wang, H. Ke et al., “The fabricaiton of novel nanobubble ultrasound contrast agent for potential tumor imaging,” Nanotechnology, vol. 21: 145607, 2010. View at: Google Scholar
  91. R. Cavalli, A. Bisazza, M. Trotta et al., “New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization,” Int. J. Nanomedicine, vol. 7, pp. 3309–3318, 2012. View at: Google Scholar
  92. D. Lapotko, “Plasmonic nanobubbles as tunable cellular probes for cancer theranostics,” Cancers, vol. 3, no. 1, pp. 802–840, 2011. View at: Google Scholar
  93. J. L. J. Perez, A. C. Orea, E. R. Gallegos, and R. G. Fuentes, “Photoacoustic spectroscopy to determine in vitro the nonradiative relaxation time of porotoporphyrin IX solution containing gold metallic nanoparticles,” Eur. Phys. J. Spec. Top, vol. 152, pp. 353–356, 2008. View at: Google Scholar
  94. S. Yamaguchi, H. Kobayashi, T. Narita et al., “Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: comparison of cytotoxic mechanism with photodynamic therapy,” Ultrason. Sonochem., vol. 18, pp. 1197–1204, 2011. View at: Google Scholar
  95. H. R. Petty, “Spatiotemporal chemical dynamics in living cells: From inforamtion trafficking to cell physiology,” Biosystems, vol. 83, pp. 217–224, 2006. View at: Google Scholar
  96. J. Park, Z. Fan, R. E. Kumon, M. E. H. El-Sayed, and C. X. Deng, “Modulation of intracellular CA2+ concentration in brain microvascular endothelial cells in vitro by acoustic cavitation,” Ultrasound in Medicine & Biology, vol. 36, no. 7, pp. 1176–1187, 2010. View at: Google Scholar
  97. W. Zhong, W. H. Sit, J. M. F. Wan, and A. C. H. Yu, “Sonoporation induces apoptosis and cell cycle arrest in human promyelocytic leukemia cells,” Ultrasound in Medicine & Biology, vol. 37, no. 12, pp. 2149–2159, 2011. View at: Google Scholar
  98. H. R. Guzman, D. X. Nguyen, A. J. McNamara, and M. R. Prausnitz, “Equilibrium loading of cells with macromolecules by ultrasound: effects of molecular size and acoustic energy,” J. Pharm. Sci., vol. 91, pp. 1693–1701, 2002. View at: Google Scholar
  99. M. I. Alam, S. Beg, A. Samad et al., “Strategy for effective brain drug delivery,” European Journal of Pharmaceutical Sciences, vol. 40, no. 5, pp. 385–403, 2010. View at: Google Scholar
  100. K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits,” Radiology, vol. 220, pp. 640–646, 2001. View at: Google Scholar
  101. N. McDannold, N. Vykhodtseva, and K. Hynynen, “Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption,” Ultrasound in medicine & biology, vol. 34, no. 6, pp. 930–937, 2008. View at: Google Scholar
  102. M. A. O'Reilly and K. Hynynen, “Ultrasound enhanced drug delivery to the brain and central nervous system,” International Journal of Hyperthermia, vol. 28, no. 4, pp. 386–396, 2012. View at: Google Scholar
  103. P.-Y. Chen, H.-L. Liu, M.-Y. Hua et al., “Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment,” Neuro. Oncol., vol. 12, no. 10, pp. 1050–1060, 2010. View at: Google Scholar
  104. H.-L. Liu, M.-Y. Hua, P.-Y. Chen et al., “Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment,” Radiology, vol. 255, pp. 415–425, 2010. View at: Google Scholar
  105. R. Langer, “Biomaterials in drug delivery and tissue engineering: one laboratory's experience,” Acc. Chem. Res, vol. 33, pp. 94–101, 2000. View at: Google Scholar
  106. B. E. Polat, D. Hart, R. Langer, and D. Blankschtein, “Ultrasound-mediated transdermal drug delivery: Mechanism, scope, and emerging trends,” Journal of Controlled Release, vol. 152, no. 3, pp. 330–348, 2011. View at: Google Scholar

Copyright © 2013 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views609
Downloads796
Citations

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.