Table of Contents Author Guidelines Submit a Manuscript
Journal of Healthcare Engineering
Volume 5, Issue 1, Pages 79-94
http://dx.doi.org/10.1260/2040-2295.5.1.79
Research Article

Safety Measurements for Heating of Instruments for Cardiovascular Interventions in Magnetic Particle Imaging (MPI) - First Experiences

Robert L. Duschka,1 Hanne Wojtczyk,2 Nikolaos Panagiotopoulos,1 Julian Haegele,1 Gael Bringout,2 Thorsten M. Buzug,2 Joerg Barkhausen,1 and Florian M. Vogt1

1Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Luebeck, Germany
2Institute of Medical Engineering, University of Luebeck, Luebeck, Germany

Received 1 May 2013; Accepted 1 October 2013

Copyright © 2014 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Eagleton, “Intraprocedural imaging: flat panel detectors, rotational angiography, FluoroCT, IVUS, or still the portable C-arm?” J Vasc Surg, vol. 52, 4 Suppl, pp. 50S–59S, 2010. View at Google Scholar
  2. M. J. Wallace, M. D. Kuo, C. Glaiberman, C. A. Binkert, R. C. Orth, and G. Soulez, “Three-dimensional C-arm cone-beam CT: applications in the interventional suite,” J Vasc Interv Radiol, vol. 19, no. 6, pp. 99–813, 2008. View at Google Scholar
  3. M. Bock and F. K. Wacker, “MR-guided intravascular interventions: techniques and applications,” J Magn Reson Imaging, vol. 27, no. 2, pp. 326–338, 2008. View at Google Scholar
  4. G. C. Kagadis, K. Katsanos, D. Karnabatidis, G. Loudos, G. C. Nikiforidis, and W. R. Hendee, “Emerging technologies for image guidance and device navigation in interventional radiology,” Med Phys, vol. 39, no. 9, pp. 5768–5781, 2012. View at Google Scholar
  5. A. J. Martin, B. Baek, G. Acevedo-Bolton, R. T. Higashida, J. Comstock, and D. A. Saloner, “MR imaging during endovascular procedures: an evaluation of the potential for catheter heating,” Magn Reson Med, vol. 61, no. 1, pp. 45–53, 2009. View at Google Scholar
  6. W. R. Nitz, A. Oppelt, W. Renz, C. Manke, M. Lenhart, and J. Link, “On the heating of linear conductive structures as guide wires and catheters in interventional MRI,” J Magn Reson Imaging, vol. 13, no. 1, pp. 105–114, 2001. View at Google Scholar
  7. F. Settecase, S. W. Hetts, A. J. Martin et al., “RF Heating of MRI-Assisted Catheter Steering Coils for Interventional MRI,” Acad Radiol, vol. 18, no. 3, pp. 277–285, 2011. View at Google Scholar
  8. H. Muranaka, T. Horiguchi, S. Usui, Y. Ueda, O. Nakamura, and F. Ikeda, “Dependence of RF heating on SAR and implant position in a 1.5T MR System,” Magn Reson Med Sci, vol. 6, no. 4, pp. 199–209, 2007. View at Google Scholar
  9. H. Graf, G. Steidle, and F. Schick, “Heating of metallic implants and instruments induced by gradient switching in a 1. 5-Tesla whole-body unit,” J Magn Reson Imaging, vol. 26, no. 5, pp. 1328–1333, 2007. View at Google Scholar
  10. F. K. Wacker, K. Reither, W. Ebert, M. Wendt, J. S. Lewin, and K. J. Wolf, “MR image-guided endovascular procedures with the ultrasmall superparamagnetic iron oxide SH U 555 C as an intravascular contrast agent: study in pigs,” Radiology, vol. 226, no. 2, pp. 459–464, 2003. View at Google Scholar
  11. A. Tzifa, G. A. Krombach, N. Krämer et al., “Magnetic resonance-guided cardiac interventions using magnetic resonance-compatible devices: a preclinical study and first-in-man congenital interventions,” Circ Cardiovasc Interv, vol. 3, no. 6, pp. 585–592, 2010. View at Google Scholar
  12. N. Tong, A. Shmatukha, P. Asmah, and J. Stainsby, “Practical aspects of MR imaging in the presence of conductive guide wires,” Phys Med Biol, vol. 55, no. 1, pp. N13–N22, 2010. View at Google Scholar
  13. M. Saeed, S. W. Hetts, J. English, and M. Wilson, “MR fluoroscopy in vascular and cardiac interventions (review),” Int J Cardiovasc Imaging, vol. 28, no. 1, pp. 117–137, 2012. View at Google Scholar
  14. B. Gleich and J. Weizenecker, “Tomographic imaging using the nonlinear response of magnetic particles,” Nature, vol. 435, no. 7046, pp. 1214–1217, 2005. View at Google Scholar
  15. J. Weizenecker, J. Borgert, and B. Gleich, “A simulation study on the resolution and sensitivity of magnetic particle imaging,” Phys Med Biol, vol. 52, no. 21, pp. 6363–6374, 2007. View at Google Scholar
  16. B. Gleich, J. Weizenecker, and J. Borgert, “Experimental results on fast 2D-encoded magnetic particle imaging,” Phys Med Biol, vol. 53, no. 6, pp. N81–N84, 2008. View at Google Scholar
  17. J. Weizenecker, B. Gleich, J. Rahmer, H. Dahnke, and J. Borgert, “Three-dimensional real-time in vivo magnetic particle imaging,” Phys Med Biol, no. particle, pp. L1–L10, 2009. View at Google Scholar
  18. T. M. Buzug, G. Bringout, M. Erbe et al., “Magnetic Particle Imaging: Introduction to Imaging and Hardware Realization,” Z Med Phys, vol. 22, no. 4, pp. 323–334, 2012. View at Google Scholar
  19. J. Haegele, T. Sattel, M. Erbe et al., “Magnetic particle imaging (MPI),” Rofo, vol. 184, no. 5, pp. 420–426, 2012 (German). View at Google Scholar
  20. G. Schütz, “The potential of magnetic particle imaging in the competitive environment of cardiac diagnostics,” in Magnetic Particle Imaging, T. Buzug and J. Borgert, Eds., vol. 140 of SPPHY, pp. 129–134, Springer, Verlag Berlin Heidelberg, 2012. View at Google Scholar
  21. R. L. Duschka, J. Haegele, N. Panagiotopoulos et al., “Fundamentals and Potential of Magnetic Particle Imaging,” Curr Cardiovasc Imaging Rep, vol. 6, no. 5, pp. 390–398, 2013. View at Google Scholar
  22. J. Haegele, S. Biederer, H. Wojtczyk et al., “Toward cardiovascular interventions guided by magnetic particle imaging: First instrument characterization,” Magn Reson Med, vol. 69, no. 6, pp. 1761–1767, 2013. View at Google Scholar
  23. J. Haegele, J. Rahmer, B. Gleich et al., “Magnetic particle imaging: visualization of instruments for cardiovascular intervention,” Radiology, vol. 265, no. 3, pp. 933–938, 2012. View at Google Scholar
  24. B. Gleich, J. Weizenecker, H. Timminger et al., “Fast MPI Demonstrator with Enlarged Field of View,” in International Society for Magnetic Resonance in Medicine, 18th Annual Meeting, p. 3285, Stockholm, 2010.
  25. E. Saritas, P. Goodwill, G. Zhang, Y. Wenxiao, and S. Conolly, “Safety Limits for Human-Size Magnetic Particle Imaging Systems,” in Magnetic Particle Imaging, T. M. Buzug and J. Borgert, Eds., vol. SPPHY 140, pp. 325–330, Springer, Verlag Berlin Heidelberg, 2012. View at Google Scholar
  26. I. N. Weinberg, P. Y. Stepanov, S. T. Fricke et al., “Increasing the oscillation frequency of strong magnetic fields above 101 kHz significantly raises peripheral nerve excitation thresholds,” Med Phys, vol. 39, no. 5, pp. 2578–2583, 2012. View at Google Scholar