Abstract

During the process of aging, the fraction of CD4+ T Cells with a naive phenotype, that is, Pgp-1- CD45RBHighMEL-14+, decreases in favor of CD4+ T memory cells. Total CD4+ T cells from aged mice displayed a diminished calcium response to anti-CD3 and even ionomycin as compared to the cells from young mice, and this was related to the changed composition of the CD4+ T-cell population. Regardless the age of the donor mice, naive CD4+ T cells effectively increased intracellular calcium, whereas memory CD4+ T cells were impaired in this regard. In addition, a heterogeneity in the differentiation stage of the naive CD4+ T cells was shown by the observation that calcium mobilization in naive CD4+ T cells from young mice was more profound than that in their aged counterparts. These data thus indicate that during the acquisition of a memory phenotype, murine CD4+ T cells lose the capacity to increase intracellular calcium, which in turn may be responsible for the decreased level of IL-2 production by these cells.