Table of Contents Author Guidelines Submit a Manuscript
Developmental Immunology
Volume 7 (2000), Issue 2-4, Pages 249-266

T Cell Migration in Three-dimensional Extracellular Matrix: Guidance by Polarity and Sensations

Cell Migration Laboratory, Department of Dermatology, University of Würzburg, Josef-Schneider-Str. 2. 10, Würzburg 97080, Germany

Copyright © 2000 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The locomotion of T lymphocytes within 3-D extracellular matrix (ECM) is a highly dynamic and flexible process following the principles of ameboid movement. Ameboid motility is characterized by a polarized yet simple cell shape allowing high speed, rapid directional oscillations, and low affinity interactions to the substrate that are coupled to a low degree of cytoskeletal organization lacking discrete focal contacts. At the onset of T cell migration, a default program, here described as migration-associated polarization, is initiated, resulting in the polar redistribution of cell surface receptors and cytoskeletal elements. Polarization involves protein cycling either to the leading edge (i.e. LFA-1, CD45RO, chemokine receptors, focal adhesion kinase), to a central polarizing compartment (MTOC, PKC, MARCKS), or into the uropod (CD44, CD43, ICAM- and –3, β1 integrins). The function of such compartment formation may be important in chemotactic response, scanning of encountered cells, and a flexible and adaptive interaction with the ECM itself. Due to the simple shape and a diffusely organized cytoskeleton, the interactions to the surrounding extracellular matrix are rapid and reversible and appear to allow a broad spectrum of molecular migration strategies. These range from (1) adhesive and haptokinetic following i.e. chemokine-induced motility across 2-D surfaces to (2) largely integrin-independent migration predominantly guided by shape change and morphological flexibility, as seen in 3-D type I collagen matrices. Their prominent capacity to rapidly adapt to a given structural environment coupled to contact guidance mechanisms set T cell locomotion apart from slow, focal contact-dependent and more adhesive migration strategies established by fibroblast-like cells and cell clusters. It is therefore likely that, within the tissues, besides chemotactic or haptotactic gradients, the preformed matrix structure has an important impact on T cell trafficking and positioning in health and disease.