Journal of Immunology Research

Journal of Immunology Research / 2000 / Article

Open Access

Volume 7 |Article ID 82708 | 12 pages | https://doi.org/10.1155/2000/82708

In vitro and in vivo Expression of Interstitial Collagenase/MMP-1 by Human Mast Cells

Abstract

Degradation of the extracellular matrix occurs under physiological and pathological conditions, thought to be principally mediated by a family of neutral proteolytic enzymes termed the matrix metalloproteinases (MMPs). The present study was initiated to determine whether mast cells have the ability to produce these proteases in diseased and normal human tissue. Immunohistochemistry and in situ hybridization was performed to localize interstitial collagenase protein and mRNA transcripts in diseased human tissue. The human mast cell line HMC-1 was cultured under serum free conditions, stimulated with phorbol mystrate acetate (PMA) and supernatants analyzed by Western blotting and zymography to determine the profile of secreted MMPs. The dog mast cell line BR, known to secrete gelatinolytic enzymes, was used in parallel studies. Total RNA was extracted and analyzed by RT-PCR for the expression of tissue inhibitors of MMP (TIMPs). Collagenase-1 protein and mRNA were expressed by tryptase and chymase positive human mast cells in all tissue analyzed. This proteinase wa also detected in the cytoplasm and conditioned media of HMC-1 cells. PMA induced gelatinolytic activity in both mast cell lines examined. TIMP-1 immunoreactivity was detected and TIMP-1, and-2 (but not TIMP-3) mRNA transcripts were amplified from HMC-1 cells. This is the first demonstration of the expression of collagenase-1 by human mast cells in both inflamed and normal tissues, and by a human mast cell line. MMPs secreted by these cells could contribute to the extensive matrix lysis characteristic of diseases such as rheumatoid arthritis and inflammatory ocular disorders. Alternatively collagenase-1 production by mast cells may play a critical role in cell invasion and migration into sites of inflammation.

Copyright © 2000 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

0 Views | 0 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.