Table of Contents Author Guidelines Submit a Manuscript
Developmental Immunology
Volume 8, Issue 3-4, Pages 319-330

Prolactin and Prolactin Receptor Expression in Rat, Small Intestine, Intraepithelial Lymphocytes During Neonatal Developmen

1Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 431 S. Frear, University Park, PA 16802, USA
2University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
3University of Michigan, Department of Pediatric Surgery, Ann Arbor, MI 48109, USA

Copyright © 2001 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Intraepithelial lymphocytes (IEL) are specialized T cells found between the epithelial cells of the small intestine. Because of their location, IEL are the first lymphocytes to contact intestinal bacteria and food antigens. In the neonate, IEL may be the first cells of the immune system to interact with milk-borne hormones including prolactin (PRL). PRL, an endocrine hormone abundant in breast milk, interacts with cells through surface receptors. PRL has been shown to function as an immunoregulator and may affect the development of the newborn's immune system. To determine if PRL plays a role in IEL development, small intestine IEL from rats of various ages were examined for the presence of surface prolactin receptor (PRL-R) and several lymphoid markers by flow cytometry. Between birth and 96 days of age about 80% of IEL were found to express PRL-R. These same cells also expressed the mRNA for PRL. Additionally, all of the IEL subpopulations examined were found to express PRL-R. Analysis of the normal development of rat IEL revealed an age related increase in total IEL, CD4 positive cells as well as a peak in interleukin-2 receptor (IL-2R) expression at weaning. In summary, the results indicate that IEL express PRL and PRL-R. In addition, an activation marker, IL-2R, changes in expression during neonatal development.