Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2010, Article ID 721531, 8 pages
http://dx.doi.org/10.1155/2010/721531
Review Article

Prognostic and Diagnostic Value of Spontaneous Tumor-Related Antibodies

Department of Oncology, Hematology, Stem Cell Transplantation with the section Pneumology, University Cancer Center Hamburg (Hubertus Wald Tumorzentrum), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany

Received 30 June 2010; Revised 11 October 2010; Accepted 29 November 2010

Academic Editor: Richard L. Gallo

Copyright © 2010 Sebastian Kobold et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. Silberstein, History of Immunology, Academic Press, San Diego, Calif, USA, 1989.
  2. J. D. Bui and R. D. Schreiber, “Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes?” Current Opinion in Immunology, vol. 19, no. 2, pp. 203–208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Willimsky and T. Blankenstein, “Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance,” Nature, vol. 437, no. 7055, pp. 141–146, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Bei, L. Masuelli, C. Palumbo, M. Modesti, and A. Modesti, “A common repertoire of autoantibodies is shared by cancer and autoimmune disease patients: inflammation in their induction and impact on tumor growth,” Cancer Letters, vol. 281, no. 1, pp. 8–23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. M. Black, S. Kerpe, and F. D. Speer, “Lymph node structure in patients with cancer of the breast,” American Journal of Pathology, vol. 29, pp. 505–521, 1953. View at Google Scholar
  6. R. Ralhan, N. Nath, S. Agarwal, M. Mathur, B. Wasylyk, and N. K. Shukla, “Circulating p53 antibodies as early markers of oral cancer: correlation with p53 alterations,” Clinical Cancer Research, vol. 4, no. 9, pp. 2147–2152, 1998. View at Google Scholar · View at Scopus
  7. H. T. Tan, J. Low, S. G. Lim, and M. C. M. Chung, “Serum autoantibodies as biomarkers for early cancer detection,” FEBS Journal, vol. 276, no. 23, pp. 6880–6904, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Lubin, G. Zalcman, L. Bouchet et al., “Serum p53 antibodies as early markers of lung cancer,” Nature Medicine, vol. 1, no. 7, pp. 701–702, 1995. View at Google Scholar · View at Scopus
  9. D. G. DeNardo and L. M. Coussens, “Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression,” Breast Cancer Research, vol. 9, no. 4, p. 212, 2007. View at Google Scholar · View at Scopus
  10. M. J. Titulaer, R. Klooster, M. Potman et al., “SOX antibodies in small-cell lung cancer and Lambert-Eaton myasthenic syndrome: frequency and relation with survival,” Journal of Clinical Oncology, vol. 27, no. 26, pp. 4260–4267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Ait-Tahar, C. Damm-Welk, B. Burkhardt et al., “Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk,” Blood, vol. 115, no. 16, pp. 3314–3319, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Lu, V. Goodell, and M. L. Disis, “Humoral immunity directed against tumor-associated antigens as potential biomarkers for the early diagnosis of cancer,” Journal of Proteome Research, vol. 7, no. 4, pp. 1388–1394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. Research LIfC, “Cancer Immunome Database,” 2010.
  14. K. D. Preuss, C. Zwick, C. Bormann, F. Neumann, and M. Pfreundschuh, “Analysis of the B-cell repertoire against antigens expressed by human neoplasms,” Immunological Reviews, vol. 188, pp. 43–50, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Von Mensdorff-Pouilly, M. M. Gourevitch, P. Kenemans et al., “Humoral immune response to polymorphic epithelial mucin (MUC-1) in patients with benign and malignant breast tumours,” European Journal of Cancer A, vol. 32, no. 8, pp. 1325–1331, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Nakamura, Y. Hinoda, N. Nakagawa et al., “Detection of circulating anti-MUC1 mucin core protein antibodies in patients with colorectal cancer,” Journal of Gastroenterology, vol. 33, no. 3, pp. 354–361, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Chapman, A. Murray, J. Chakrabarti et al., “Autoantibodies in breast cancer: their use as an aid to early diagnosis,” Annals of Oncology, vol. 18, no. 5, pp. 868–873, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Hirasawa, N. Kohno, A. Yokoyama, K. Kondo, K. Hiwada, and M. Miyake, “Natural autoantibody to MUC1 is a prognostic indicator for non-small cell lung cancer,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 2 I, pp. 589–594, 2000. View at Google Scholar · View at Scopus
  19. R. Lubin, B. Schlichtholz, J. L. Teillaud et al., “p53 antibodies in patients with various types of cancer: assay, identification, and characterization,” Clinical Cancer Research, vol. 1, no. 12, pp. 1463–1469, 1995. View at Google Scholar · View at Scopus
  20. R. Lubin, B. Schlichtholz, D. Bengoufa et al., “Analysis of p53 antibodies in patients with various cancers define B-cell epitopes of human p53: distribution on primary structure and exposure on protein surface,” Cancer Research, vol. 53, no. 24, pp. 5872–5876, 1993. View at Google Scholar · View at Scopus
  21. R. Ralhan, S. Arora, T. K. Chattopadhyay, N. K. Shukla, and M. Mathur, “Circulating p53 antibodies, p53 gene mutational profile and product accumulation in esophageal squamous-cell carcinoma in India,” International Journal of Cancer, vol. 85, no. 6, pp. 791–795, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Y. Zhang, C. A. Casiano, X. X. Peng, J. A. Koziol, E. K. L. Chan, and E. M. Tan, “Enhancement of antibody detection in cancer using panel of recombinant tumor-associated antigens,” Cancer Epidemiology Biomarkers and Prevention, vol. 12, no. 2, pp. 136–143, 2003. View at Google Scholar · View at Scopus
  23. B. Abendstein, C. Marth, E. Müller-Holzner, M. Widschwendter, G. Daxenbichler, and A. G. Zeimet, “Clinical significance of serum and ascitic p53 autoantibodies in epithelial ovarian carcinoma,” Cancer, vol. 88, no. 6, pp. 1432–1437, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. F. D. Vogl, E. Stickeler, M. Weyermann et al., “p53 autoantibodies in patients with primary ovarian cancer are associated with higher age, advanced stage and a higher proportion of p53-positive tumor cells,” Oncology, vol. 57, no. 4, pp. 324–329, 1999. View at Google Scholar · View at Scopus
  25. M. Tschernatsch, O. Gross, N. Kneifel, M. Kaps, and F. Blaes, “SOX-1 autoantibodies in patients with paraneoplastic neurological syndromes,” Autoimmunity Reviews, vol. 8, no. 7, pp. 549–551, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. T. M. E. Davis, Z. Mehta, I. R. Mackay et al., “Autoantibodies to the islet cell antigen SOX-13 are associated with duration but not type of diabetes,” Diabetic Medicine, vol. 20, no. 3, pp. 198–204, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Li, Y. Deng, XI. Li, Q. P. Chen, X. C. Liao, and X. Qin, “Diagnostic value of Epstein-Barr virus capsid antigen-IgA in nasopharyngeal carcinoma: a meta-analysis,” Chinese Medical Journal, vol. 123, no. 9, pp. 1201–1205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Babel, R. Barderas, R. Díaz-Uriarte, J. L. Martínez-Torrecuadrada, M. Sánchez-Carbayo, and J. I. Casal, “Identification of tumor-associated autoantigens for the diagnosis of colorectal cancer in serum using high density protein microarrays,” Molecular and Cellular Proteomics, vol. 8, no. 10, pp. 2382–2395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Zhong, K. Ge, J. C. Zu et al., “Autoantibodies as potential biomarkers for breast cancer,” Breast Cancer Research, vol. 10, no. 3, p. R40, 2008. View at Google Scholar · View at Scopus
  30. C. Desmetz, C. Bascoul-Mollevi, P. Rochaix et al., “Identification of a new panel of serum autoantibodies associated with the presence of in situ carcinoma of the breast in younger women,” Clinical Cancer Research, vol. 15, no. 14, pp. 4733–4741, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Chen, S. Fu, F. Chen, H. Chen, and Z. Chen, “Identification of tumor-associated antigens in human hepatocellular carcinoma by autoantibodies,” Oncology Reports, vol. 20, no. 4, pp. 979–985, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. C. C. Chan, C. W. Fan, Y. B. Kuo et al., “Multiple serological biomarkers for colorectal cancer detection,” International Journal of Cancer, vol. 126, no. 7, pp. 1683–1690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Ran, H. Hu, Z. Zhou et al., “Profiling tumor-associated autoantibodies for the detection of colon cancer,” Clinical Cancer Research, vol. 14, no. 9, pp. 2696–2700, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Chen, Y. Zhou, S. Qiu et al., “Autoantibodies to tumor-associated antigens combined with abnormal alpha-fetoprotein enhance immunodiagnosis of hepatocellular carcinoma,” Cancer Letters, vol. 289, no. 1, pp. 32–39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Y. Zhang, R. Megliorino, X. X. Peng, E. M. Tan, Y. Chen, and E. K. L. Chan, “Antibody detection using tumor-associated antigen mini-array in immunodiagnosing human hepatocellular carcinoma,” Journal of Hepatology, vol. 46, no. 1, pp. 107–114, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. HO. S. Lin, H. S. Talwar, A. L. Tarca et al., “Autoantibody approach for serum-based detection of head and neck cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 11, pp. 2396–2405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. H. H. Wandall, O. Blixt, M. A. Tarp et al., “Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes,” Cancer Research, vol. 70, no. 4, pp. 1306–1313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. D. D. Taylor, C. Gercel-Taylor, and L. P. Parker, “Patient-derived tumor-reactive antibodies as diagnostic markers for ovarian cancer,” Gynecologic Oncology, vol. 115, no. 1, pp. 112–120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. T. H. Patwa, C. Li, L. M. Poisson et al., “The identification of phosphoglycerate kinase-1 and histone H4 autoantibodies in pancreatic cancer patient serum using a natural protein microarray,” Electrophoresis, vol. 30, no. 12, pp. 2215–2226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. X. Wang, J. Yu, A. Sreekumar et al., “Autoantibody signatures in prostate cancer,” New England Journal of Medicine, vol. 353, no. 12, pp. 1224–1235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Murray, C. J. Chapman, G. Healey et al., “Technical validation of an autoantibody test for lung cancer,” Annals of Oncology, vol. 21, no. 8, pp. 1687–1693, 2010. View at Publisher · View at Google Scholar
  42. H. Honda, S. Kusumoto, K. Nishikawa et al., “Limitation of CT in diagnosis of pancreatic cancer,” Radiation Medicine - Medical Imaging and Radiation Oncology, vol. 9, no. 2, pp. 61–67, 1991. View at Google Scholar · View at Scopus
  43. U. Fagiolo, A. Amadori, R. Biselli et al., “Quantitative and qualitative analysis of anti-tetanus toxoid antibody response in the elderly. Humoral immune response enhancement by thymostimulin,” Vaccine, vol. 11, no. 13, pp. 1336–1340, 1993. View at Publisher · View at Google Scholar · View at Scopus
  44. M. R. Barbouche, S. Romain, S. A. Avrameas, L. Piana, and P. M. Martin, “Prognostic significance of autoantibodies to laminin in the sera of breast cancer patients: a preliminary report,” European Journal of Clinical Chemistry and Clinical Biochemistry, vol. 32, no. 7, pp. 511–514, 1994. View at Google Scholar · View at Scopus
  45. S. E. Conroy, G. B. Faulds, W. Williams, D. S. Latchman, and D. A. Isenberg, “Detection of autoantibodies to the 90 kDa head shock protein in systemic lupus erythematosus and other autoimmune diseases,” British Journal of Rheumatology, vol. 33, no. 10, pp. 923–926, 1994. View at Google Scholar · View at Scopus
  46. T. Soussi, “p53 Antibodies in the sera of patients with various types of cancer: a review,” Cancer Research, vol. 60, no. 7, pp. 1777–1788, 2000. View at Google Scholar · View at Scopus
  47. A. Fosså, A. Berner, S. D. Fosså, E. Hernes, G. Gaudernack, and E. B. Smeland, “NY-ESO-I protein expression and humoral immune responses in prostate cancer,” Prostate, vol. 59, no. 4, pp. 440–447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Brankin, T. C. Skaar, M. Brotzman, B. Trock, and R. Clarke, “Autoantibodies to the nucleolar phosphoprotein nucleophosmin in breast cancer patients,” Cancer Epidemiology Biomarkers and Prevention, vol. 7, no. 12, pp. 1109–1115, 1998. View at Google Scholar · View at Scopus
  49. S. Gnjatic, E. Ritter, M. W. Büchler et al., “Seromic profiling of ovarian and pancreatic cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 11, pp. 5088–5093, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. R. B. Parmigiani, F. Bettoni, D. M. Grosso et al., “Antibodies against the cancer-testis antigen CTSP-1 are frequently found in prostate cancer patients and are an independent prognostic factor for biochemical-recurrence,” International Journal of Cancer, vol. 122, no. 10, pp. 2385–2390, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Saffroy, J. C. Lelong, D. Azoulay et al., “Clinical significance of circulating anti-p53 antibodies in European patients with hepatocellular carcinoma,” British Journal of Cancer, vol. 79, no. 3-4, pp. 604–610, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Friedrichs, S. Siegel, M. Kloess et al., “Humoral immune responses against the immature laminin receptor protein show prognostic significance in patients with chronic lymphocytic leukemia,” Journal of Immunology, vol. 180, no. 9, pp. 6374–6384, 2008. View at Google Scholar · View at Scopus
  53. X. F. Yang, C. J. Wu, S. McLaughlin et al., “CML66, a broadly immunogenic tumor antigen, elicits a humoral immune response associated with remission of chronic myelogenous leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 13, pp. 7492–7497, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. C. P. Pallasch, A. K. Struss, A. Munnia et al., “Autoantibodies against GLEA2 and PHF3 in glioblastoma: tumor-associated autoantibodies correlated with prolonged survival,” International Journal of Cancer, vol. 117, no. 3, pp. 456–459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. E. R. Richards, P. L. Devine, R. J. Quin, J. D. Fontenot, B. G. Ward, and M. A. McGuckin, “Antibodies reactive with the protein core of MUC1 mucin are present in ovarian cancer patients and healthy women,” Cancer Immunology Immunotherapy, vol. 46, no. 5, pp. 245–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Kocer, J. McKolanis, and A. Soran, “Humoral immune response to MUC5AC in patients with colorectal polyps and colorectal carcinoma,” BMC Gastroenterology, vol. 6, article 4, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Vural, L. C. Chen, P. Saip et al., “Frequency of SOX group B (SOX1, 2, 3) and ZIC2 antibodies in Turkish patients with small cell lung carcinoma and their correlation with clinical parameters,” Cancer, vol. 103, no. 12, pp. 2575–2583, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. D. Haidopoulos, M. M. Konstadoulakis, P. T. Antonakis et al., “Circulating anti-CEA antibodies in the sera of patients with breast cancer,” European Journal of Surgical Oncology, vol. 26, no. 8, pp. 742–746, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Comtesse, A. Zippel, S. Walle et al., “Complex humoral immune response against a benign tumor: frequent antibody response against specific antigens as diagnostic targets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 27, pp. 9601–9606, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Wadle, B. Kubuschok, J. Imig et al., “Serological immune response to cancer testis antigens in patients with pancreatic cancer,” International Journal of Cancer, vol. 119, no. 1, pp. 117–125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Ersvaer, J. Y. Zhang, E. McCormack et al., “Cyclin B1 is commonly expressed in the cytoplasm of primary human acute myelogenous leukemia cells and serves as a leukemia-associated antigen associated with autoantibody response in a subset of patients,” European Journal of Haematology, vol. 79, no. 3, pp. 210–225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. C. I. Vidal, P. J. Mintz, K. Lu et al., “An HSP90-mimic peptide revealed by fingerprinting the pool of antibodies from ovarian cancer patients,” Oncogene, vol. 23, no. 55, pp. 8859–8867, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. L. Mussolin, P. Bonvini, K. Ait-Tahar et al., “Kinetics of humoral response to ALK and its relationship with minimal residual disease in pediatric ALCL,” Leukemia, vol. 23, no. 2, pp. 400–402, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. I. Diesinger, C. Bauer, N. Brass et al., “Toward a more complete recognition of immunoreactive antigens in squamous cell lung carcinoma,” International Journal of Cancer, vol. 102, no. 4, pp. 372–378, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. B. B. J. Hermsen, R. H. M. Verheijen, F. H. Menko et al., “Humoral immune responses to MUC1 in women with a BRCA1 or BRCA2 mutation,” European Journal of Cancer, vol. 43, no. 10, pp. 1556–1563, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. V. Karanikas, S. Khalil, T. Kerenidi, K. I. Gourgoulianis, and A. E. Germenis, “Anti-survivin antibody responses in lung cancer,” Cancer Letters, vol. 282, no. 2, pp. 159–166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Jäger, E. Srockert, Z. Zidianakis et al., “Humoral immune responses of cancer patients against "cancer-testis" antigen NY-ESO-1: correlation with clinical events,” International Journal of Cancer, vol. 84, no. 5, pp. 506–510, 1999. View at Google Scholar · View at Scopus
  68. A. Akcakanat, T. Kanda, YU. Koyama et al., “NY-ESO-1 expression and its serum immunoreactivity in esophageal cancer,” Cancer Chemotherapy and Pharmacology, vol. 54, no. 1, pp. 95–100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Pavoni, A. Pucci, P. Vaccaro et al., “A study of the humoral immune response of breast cancer patients to a panel of human tumor antigens identified by phage display,” Cancer Detection and Prevention, vol. 30, no. 3, pp. 248–256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Fensterle, J. C. Becker, T. Potapenko et al., “B-Raf specific antibody responses in melanoma patients,” BMC Cancer, vol. 4, article 62, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Angelopoulou, M. Stratis, and E. P. Diamandis, “Humoral immune response against p53 protein in patients with colorectal carcinoma,” International Journal of Cancer, vol. 70, no. 1, pp. 46–51, 1997. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Tangkijvanich, A. Janchai, N. Charuruks et al., “Clinical associations and prognostic significance of serum anti-p53 antibodies in Thai patients with hepatocellular carcinoma,” Asian Pacific Journal of Allergy and Immunology, vol. 18, no. 4, pp. 237–243, 2000. View at Google Scholar · View at Scopus
  73. R. Tang, M. C. Ko, J. Y. Wang et al., “Humoral response to p53 in human colorectal tumors: a prospective study of 1,209 patients,” International Journal of Cancer, vol. 94, no. 6, pp. 859–863, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Maio, S. Coral, L. Sigalotti et al., “Analysis of cancer/testis antigens in sporadic medullary thyroid carcinoma: expression and humoral response to NY-ESO-1,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 2, pp. 748–754, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Van Rhee, S. M. Szmania, F. Zhan et al., “NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses,” Blood, vol. 105, no. 10, pp. 3939–3944, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. L. A. DiFronzo, R. K. Gupta, R. Essner et al., “Enhanced humoral immune response correlates with improved disease-free and overall survival in American Joint Committee on cancer stage II melanoma patients receiving adjuvant polyvalent vaccine,” Journal of Clinical Oncology, vol. 20, no. 15, pp. 3242–3248, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Dickersin, “The existence of publication bias and risk factors for its occurrence,” Journal of the American Medical Association, vol. 263, no. 10, pp. 1385–1389, 1990. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Valmori, N. E. Souleimanian, V. Tosello et al., “Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 21, pp. 8947–8952, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. D. Lieberman, “Progress and challenges in colorectal cancer screening and surveillance,” Gastroenterology, vol. 138, no. 6, pp. 2115–2126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. M. O'Shaughnessy, B. Konety, and C. Warlick, “Prostate cancer screening: issues and controversies,” Minnesota medicine, vol. 93, no. 8, pp. 39–44, 2010. View at Google Scholar
  81. M. Kalager, M. Zelen, F. Langmark, and H.-O. Adami, “Effect of screening mammography on breast-cancer mortality in Norway,” New England Journal of Medicine, vol. 363, no. 13, pp. 1203–1210, 2010. View at Publisher · View at Google Scholar
  82. A. C. Budd and C. J. Sturrock, “Cytology and cervical cancer surveillance in an era of human papillomavirus vaccination,” Sexual Health, vol. 7, no. 3, pp. 328–334, 2010. View at Publisher · View at Google Scholar
  83. P. J. Marchionda, L. K. Krause, J. D. Jensen, and R. P. Dellavalle, “A North American perspective on dermoscopy: benefits, limitations, and grey zones,” Giornale Italiano di Dermatologia e Venereologia, vol. 145, no. 1, pp. 89–97, 2010. View at Google Scholar · View at Scopus
  84. C. Ferté, N. Penel, J. Bonneterre, and A. Adenis, “Individual life expectancy estimation using validated prognostic scores for patients with cancer of unknown primary,” Oncology, vol. 78, no. 2, pp. 87–93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. F. F. T. Barros, D. G. Powe, I. O. Ellis, and A. R. Green, “Understanding the HER family in breast cancer: interaction with ligands, dimerization and treatments,” Histopathology, vol. 56, no. 5, pp. 560–572, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. C. C. Ton, N. Vartanian, X. Chai et al., “Gene expression array testing of FFPE archival breast tumor samples: an optimized protocol for WG-DASL® sample preparation,” Breast Cancer Research and Treatment. In press. View at Publisher · View at Google Scholar
  87. O. Tureci, U. Sahin, I. Schobert et al., “The SSX-2 gene, which is involved in the t(X;18) translocation of synovial sarcomas, codes for the human tumor antigen HOM-MEL-40,” Cancer Research, vol. 56, no. 20, pp. 4766–4772, 1996. View at Google Scholar · View at Scopus
  88. Y. T. Chen, A. O. Güre, S. Tsang et al., “Identification of multiple cancer/testis antigens by allogeneic antibody screening of a melanoma cell line library,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 12, pp. 6919–6923, 1998. View at Publisher · View at Google Scholar · View at Scopus