Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011, Article ID 176759, 7 pages
http://dx.doi.org/10.1155/2011/176759
Research Article

Systemic Administration of CpG Oligodeoxynucleotide and Levamisole as Adjuvants for Gene-Gun-Delivered Antitumor DNA Vaccines

Department of Experimental Virology, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic

Received 27 June 2011; Revised 3 August 2011; Accepted 15 August 2011

Academic Editor: Michael H. Kershaw

Copyright © 2011 Michal Šmahel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Wolff, R. W. Malone, P. Williams et al., “Direct gene transfer into mouse muscle in vivo,” Science, vol. 247, no. 4949, pp. 1465–1468, 1990. View at Google Scholar · View at Scopus
  2. D. Tang, M. DeVit, and S. A. Johnston, “Genetic immunization is a simple method for eliciting an immune response,” Nature, vol. 356, no. 6365, pp. 152–154, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. J. B. Ulmer, J. J. Donnelly, S. E. Parker et al., “Heterologous protection against influenza by injection of DNA encoding a viral protein,” Science, vol. 259, no. 5102, pp. 1745–1749, 1993. View at Google Scholar · View at Scopus
  4. J. Rice, C. H. Ottensmeier, and F. K. Stevenson, “DNA vaccines: precision tools for activating effective immunity against cancer,” Nature Reviews Cancer, vol. 8, no. 2, pp. 108–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Sasaki, F. Takeshita, K. Q. Xin, N. Ishii, and K. Okuda, “Adjuvant formulations and delivery systems for DNA vaccines,” Methods, vol. 31, no. 3, pp. 243–254, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. L. L. Thomsen, P. Topley, M. G. Daly, S. J. Brett, and J. P. Tite, “Imiquimod and resiquimod in a mouse model: adjuvants for DNA vaccination by particle-mediated immunotherapeutic delivery,” Vaccine, vol. 22, no. 13-14, pp. 1799–1809, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. K. Zuber, A. Bråve, G. Engström et al., “Topical delivery of imiquimod to a mouse model as a novel adjuvant for human immunodeficiency virus (HIV) DNA,” Vaccine, vol. 22, no. 13-14, pp. 1791–1798, 2004. View at Publisher · View at Google Scholar
  8. H. Jin, Y. Li, Z. Ma et al., “Effect of chemical adjuvants on DNA vaccination,” Vaccine, vol. 22, no. 21-22, pp. 2925–2935, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Huijun, H. Xiaowei, Z. Ying et al., “Enhancing effects of the chemical adjuvant levamisole on the DNA vaccine pVIR-P12A-IL18-3C,” Microbiology and Immunology, vol. 52, no. 9, pp. 440–446, 2008. View at Publisher · View at Google Scholar
  10. X. Wang, H. Jin, X. Du et al., “The protective efficacy aganist Schistosoma japonicum infection by immunization with DNA vaccine and levamisole as adjuvant in mice,” Vaccine, vol. 26, no. 15, pp. 1832–1845, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. A. J. Janssen, “Levamisole as an adjuvant in cancer treatment,” Journal of Clinical Pharmacology, vol. 31, no. 5, pp. 396–400, 1991. View at Google Scholar · View at Scopus
  12. L. Lombardi, F. Morelli, S. Cinieri et al., “Adjuvant colon cancer chemotherapy: where we are and where we'll go,” Cancer Treatment Reviews, vol. 36, no. 3, pp. S34–S41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Manoj, L. A. Babiuk, and S. Van Drunen Littel-van Den Hurk, “Approaches to enhance the efficacy of DNA vaccines,” Critical Reviews in Clinical Laboratory Sciences, vol. 41, no. 1, pp. 1–39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Vollmer and A. M. Krieg, “Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists,” Advanced Drug Delivery Reviews, vol. 61, no. 3, pp. 195–204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Bode, G. Zhao, F. Steinhagen, T. Kinjo, and D. M. Klinman, “CpG DNA as a vaccine adjuvant,” Expert Review of Vaccines, vol. 10, no. 4, pp. 499–511, 2011. View at Publisher · View at Google Scholar
  16. A. L. Mellor, B. Baban, P. R. Chandler, A. Manlapat, D. J. Kahler, and D. H. Munn, “Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN type 1 signaling,” Journal of Immunology, vol. 175, no. 9, pp. 5601–5605, 2005. View at Google Scholar · View at Scopus
  17. G. Wingender, N. Garbi, B. Schumak et al., “Systemic application of CpG-rich DNA suppresses adaptive T cell immunity via induction of IDO,” European Journal of Immunology, vol. 36, no. 1, pp. 12–20, 2006. View at Publisher · View at Google Scholar
  18. N. S. Wilson, G. M. N. Behrens, R. J. Lundie et al., “Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity,” Nature Immunology, vol. 7, no. 2, pp. 165–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. E. Seif, D. M. Barrett, M. Milone, V. I. Brown, S. A. Grupp, and G. S. D. Reid, “Long-term protection from syngeneic acute lymphoblastic leukemia by CpG ODN-mediated stimulation of innate and adaptive immune responses,” Blood, vol. 114, no. 12, pp. 2459–2466, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Šmahel, P. Šíma, V. Ludvíková, and V. Vonka, “Modified HPV16 E7 genes as DNA vaccine against E7-containing oncogenic cells,” Virology, vol. 281, no. 2, pp. 231–238, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Ludvíková, E. Hamsíková, E. Sobotková, V. Lucansky, M. Smahel, and V. Vonka, “Use of polyclonal rabbit antibodies for detection of the bcr-abl fusion zone in cells transfected with experimental bcr-abl DNA vaccines,” International Journal of Oncology, vol. 27, no. 1, pp. 265–274, 2005. View at Google Scholar
  22. M. Šmahel, D. Pokorná, J. Macková, and J. Vlasák, “Enhancement of immunogenicity of HPV16 E7 oncogene by fusion with E. coli β-glucuronidase,” Journal of Gene Medicine, vol. 6, no. 10, pp. 1092–1101, 2004. View at Publisher · View at Google Scholar
  23. M. Šmahel, P. Šíma, V. Ludvíková, I. Marinov, D. Pokorná, and V. Vonka, “Immunisation with modified HPV16 E7 genes against mouse oncogenic TC-1 cell sublines with downregulated expression of MHC class I molecules,” Vaccine, vol. 21, no. 11-12, pp. 1125–1136, 2003. View at Publisher · View at Google Scholar
  24. K. Y. Lin, F. G. Guarnieri, K. F. Staveley-O'Carroll et al., “Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen,” Cancer Research, vol. 56, no. 1, pp. 21–26, 1996. View at Google Scholar · View at Scopus
  25. J. McLaughlin, E. Chianese, and O. N. Witte, “In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 18, pp. 6558–6562, 1987. View at Google Scholar · View at Scopus
  26. A. A. Němečková, R. Stránská, J. Šubrtová et al., “Immune response to E7 protein of human papillomavirus type 16 anchored on the cell surface,” Cancer Immunology, Immunotherapy, vol. 51, no. 2, pp. 111–119, 2002. View at Publisher · View at Google Scholar
  27. V. Lucansky, E. Sobotkova, R. Tachezy, M. Duskova, and V. Vonka, “DNA vaccination against bcr-abl-positive cells in mice,” International Journal of Oncology, vol. 35, no. 4, pp. 941–951, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. F. K. Stevenson, C. H. Ottensmeier, and J. Rice, “DNA vaccines against cancer come of age,” Current Opinion in Immunology, vol. 22, no. 2, pp. 264–270, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. A. M. Krieg, “Development of TLR9 agonists for cancer therapy,” Journal of Clinical Investigation, vol. 117, no. 5, pp. 1184–1194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Y. Chen, Y. L. Lin, and B. L. Chiang, “Levamisole enhances immune response by affecting the activation and maturation of human monocyte-derived dendritic cells,” Clinical and Experimental Immunology, vol. 151, no. 1, pp. 174–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Iwasaki and R. Medzhitov, “Toll-like receptor control of the adaptive immune responses,” Nature Immunology, vol. 5, no. 10, pp. 987–995, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. A. M. Krieg, S. M. Efler, M. Wittpoth, M. J. Al Adhami, and H. L. Davis, “Induction of systemic TH1-like innate immunity in normal volunteers following subcutaneous but not intravenous administration of CPG 7909, a synthetic B-class CpG oligodeoxynucleotide TLR9 agonist,” Journal of Immunotherapy, vol. 27, no. 6, pp. 460–471, 2004. View at Google Scholar · View at Scopus
  33. H. A. Kim, H. M. Ko, H. W. Ju et al., “CpG-ODN-based immunotherapy is effective in controlling the growth of metastasized tumor cells,” Cancer Letters, vol. 274, no. 1, pp. 160–164, 2009. View at Publisher · View at Google Scholar · View at Scopus