Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011, Article ID 192630, 6 pages
http://dx.doi.org/10.1155/2011/192630
Review Article

The Impact of Transcriptomics on the Fight against Tuberculosis: Focus on Biomarkers, BCG Vaccination, and Immunotherapy

1The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto SP, Brazil
2Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, USP, 14040-900 Ribeirão Preto, SP, Brazil
3Disciplines of Genetics and Molecular Biology, Department of Morphology, Faculty of Dentistry, USP, 14040-904 Ribeirão Preto, SP, Brazil

Received 12 September 2010; Accepted 16 November 2010

Academic Editor: Nicholas West

Copyright © 2011 Carlos Rodrigo Zárate-Bladés et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, “Global Tuberculosis Control. A short update to the 2009 report,” http://www.who.int/tb/publications/global_report/2009/en/index.html.
  2. http://www.stoptb.org/.
  3. S. J. Waddell and P. D. Butcher, “Microarray analysis of whole genome expression of intracellular Mycobacterium tuberculosis,” Current Molecular Medicine, vol. 7, no. 3, pp. 287–296, 2007. View at Publisher · View at Google Scholar
  4. R. Haller, M. Kennedy, N. Arnold, and R. Rutherford, “The transcriptome of Mycobacterium tuberculosis,” Applied Microbiology and Biotechnology, vol. 86, no. 1, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. Flores-Valdez, R. P. Morris, F. Laval, M. Daffé, and G. K. Schoolnik, “Mycobacterium tuberculosis modulates its cell surface via an oligopeptide permease (Opp) transport system,” FASEB Journal, vol. 23, no. 12, pp. 4091–4104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. I. L. Bartek, R. Rutherford, V. Gruppo et al., “The DosR regulon of M. tuberculosis and antibacterial tolerance,” Tuberculosis, vol. 89, no. 4, pp. 310–316, 2009. View at Publisher · View at Google Scholar
  7. D. E. MacHugh, E. Gormley, S. D. E. Park et al., “Gene expression profiling of the host response to Mycobacterium bovis infection in cattle,” Transboundary and Emerging Diseases, vol. 56, no. 6-7, pp. 204–214, 2009. View at Publisher · View at Google Scholar
  8. I. N. de Kantor, M. Ambroggi, S. Poggi et al., “Human Mycobacterium bovis infection in ten Latin American countries,” Tuberculosis, vol. 88, no. 4, pp. 358–365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Schnappinger, G. K. Schoolnik, and S. Ehrt, “Expression profiling of host pathogen interactions: how Mycobacterium tuberculosis and the macrophage adapt to one another,” Microbes and Infection, vol. 8, no. 4, pp. 1132–1140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Chaussabel, R. T. Semnani, M. A. McDowell, D. Sacks, A. Sher, and T. B. Nutman, “Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites,” Blood, vol. 102, no. 2, pp. 672–681, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Mortellaro, L. Robinson, and R. C. Paola, “Spotlight on mycobacteria and dendritic cells: will novel targets to fight tuberculosis emerge?” EMBO Molecular Medicine, vol. 1, no. 1, pp. 19–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C. V. Harding and W. H. Boom, “Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors,” Nature Reviews Microbiology, vol. 8, no. 4, pp. 296–307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. L. Kendall, S. C. G. Rison, F. Movahedzadeh, R. Frita, and N. G. Stoker, “What do microarrays really tell us about M. tuberculosis?” Trends in Microbiology, vol. 12, no. 12, pp. 537–544, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Dheda, H. Booth, J. F. Huggett, M. A. Johnson, A. Zumla, and G. A. W. Rook, “Lung remodeling in pulmonary tuberculosis,” Journal of Infectious Diseases, vol. 192, no. 7, pp. 1201–1210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. G. A. W. Rook, K. Dheda, and A. Zumla, “Do successful tuberculosis vaccines need to be immunoregulatory rather than merely Th1-boosting?” Vaccine, vol. 23, no. 17-18, pp. 2115–2120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. R. S. Wallis, M. Pai, D. Menzies et al., “Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice,” The Lancet, vol. 375, no. 9729, pp. 1920–1937, 2010. View at Publisher · View at Google Scholar
  17. S. K. Parida and S. H. E. Kaufmann, “The quest for biomarkers in tuberculosis,” Drug Discovery Today, vol. 15, no. 3-4, pp. 148–157, 2010. View at Publisher · View at Google Scholar
  18. L. J. Van't Veer, H. Dai, M. J. Van de Vijver et al., “Gene expression profiling predicts clinical outcome of breast cancer,” Nature, vol. 415, no. 6871, pp. 530–536, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Jacobsen, D. Repsilber, A. Gutschmidt et al., “Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis,” Journal of Molecular Medicine, vol. 85, no. 6, pp. 613–621, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Mistry, J. M. Cliff, C. L. Clayfon et al., “Gene-expression patterns in whole blood identify subjects at risk for recurrent tuberculosis,” Journal of Infectious Diseases, vol. 195, no. 3, pp. 357–365, 2007. View at Google Scholar · View at Scopus
  21. M. P. R. Berry, C. M. Graham, F. W. McNab et al., “An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis,” Nature, vol. 466, no. 7309, pp. 973–977, 2010. View at Publisher · View at Google Scholar
  22. P. Andersen and T. M. Doherty, “The success and failure of BCG—implications for a novel tuberculosis vaccine,” Nature Reviews Microbiology, vol. 3, no. 8, pp. 656–662, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Ritz, W. A. Hanekom, R. Robins-Browne, W. J. Britton, and N. Curtis, “Influence of BCG vaccine strain on the immune response and protection against tuberculosis,” FEMS Microbiology Reviews, vol. 32, no. 5, pp. 821–841, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. A. Behr, M. A. Wilson, W. P. Gill et al., “Comparative genomics of BCG vaccines by whole-genome DNA microarray,” Science, vol. 284, no. 5419, pp. 1520–1523, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. H. J. Mollenkopf, K. Hahnke, and S. H. E. Kaufmann, “Transcriptional responses in mouse lungs induced by vaccination with Mycobacterium bovis BCG and infection with Mycobacterium tuberculosis,” Microbes and Infection, vol. 8, no. 1, pp. 136–144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. E. A. Cortes, D. Kaveh, J. Nunez-Garcia, P. J. Hogarth, and H. Martin Vordermeier, “Mycobacterium bovis-BCG vaccination induces specific pulmonary transcriptome biosignatures in mice,” PLoS One, vol. 5, no. 6, Article ID e11319, 2010. View at Publisher · View at Google Scholar
  27. BO. Wu, C. Huang, L. Garcia et al., “Unique gene expression profiles in infants vaccinated with different strains of Mycobacterium bovis bacille Calmette-Guérin,” Infection and Immunity, vol. 75, no. 7, pp. 3658–3664, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. A. E. Roth, L. G. Stensballe, M. L. Garly, and P. Aaby, “Beneficial non-targeted effects of BCG-Ethical implications for the coming introduction of new TB vaccines,” Tuberculosis, vol. 86, no. 6, pp. 397–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. V. G. Sierra, “Is a new tuberculosis vaccine necessary and feasible? A Cuban opinion,” Tuberculosis, vol. 86, no. 3-4, pp. 169–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Ma, C. Lienhardt, H. McIlleron, A. J. Nunn, and X. Wang, “Global tuberculosis drug development pipeline: the need and the reality,” The Lancet, vol. 375, no. 9731, pp. 2100–2109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. G. A. W. Rook, D. B. Lowrie, and R. Hernández-Pando, “Immunotherapeutics for tuberculosis in experimental animals: is there a common pathway activated by effective protocols?” Journal of Infectious Diseases, vol. 196, no. 2, pp. 191–198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. P. J. Cardona, “New insights on the nature of latent tuberculosis infection and its treatment,” Inflammation and Allergy: Drug Targets, vol. 6, no. 1, pp. 27–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Stanford, C. Stanford, and J. Grange, “Immunotherapy with Mycobacterium vaccae in the treatment of tuberculosis,” Frontiers in Bioscience, vol. 9, pp. 1701–1719, 2004. View at Google Scholar · View at Scopus
  34. D. Dlugovitzky, R. Notario, D. Martinel-Lamas et al., “Immunotherapy with oral, heat-killed, Mycobacterium vaccae in patients with moderate to advanced pulmonary tuberculosis,” Immunotherapy, vol. 2, no. 2, pp. 159–169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Vilaplana, E. Montané, S. Pinto et al., “Double-blind, randomized, placebo-controlled Phase I Clinical Trial of the therapeutical antituberculous vaccine RUTI,” Vaccine, vol. 28, no. 4, pp. 1106–1116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. C. L. Silva, A. Palacios, M. J. Colston, and D. B. Lowrie, “Mycobacterium leprae 65hsp antigen expressed from a retroviral vector in a macrophage cell line is presented to T cells in association with MHC class II in addition to MHC class I,” Microbial Pathogenesis, vol. 12, no. 1, pp. 27–38, 1992. View at Publisher · View at Google Scholar · View at Scopus
  37. C. L. Silva and D. B. Lowrie, “A single mycobacterial protein (hsp 65) expressed by a transgenic antigen- presenting cell vaccinates mice against tuberculosis,” Immunology, vol. 82, no. 2, pp. 244–248, 1994. View at Google Scholar · View at Scopus
  38. E. D. C. Gonçalves, V. L. Bonato, D. M. da Fonseca et al., “Improve protective efficacy of a TB DNA-HSP65 vaccine by BCG priming,” Genetic Vaccines and Therapy, vol. 5, article no. 7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. P. R. M. Souza, C. R. Zárate-Bladés, J. I. Hori et al., “Protective efficacy of different strategies employing Mycobacterium leprae heat-shock protein 65 against tuberculosis,” Expert Opinion on Biological Therapy, vol. 8, no. 9, pp. 1255–1264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. R. S. Rosada, L. G. de la Torre, F. G. Frantz et al., “Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes,” BMC Immunology, vol. 9, article no. 38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. K. V. Lukacs, D. B. Lowrie, R. W. Stokes, and M. J. Colston, “Tumor cells transfected with a bacterial heat-shock gene lose tumorigenicity and induce protection against tumors,” Journal of Experimental Medicine, vol. 178, no. 1, pp. 343–348, 1993. View at Google Scholar · View at Scopus
  42. J. Xu, Z. Zhu, J. Wu et al., “Immunization with a recombinant GnRH vaccine conjugated to heat shock protein 65 inhibits tumor growth in orthotopic prostate cancer mouse model,” Cancer Letters, vol. 259, no. 2, pp. 240–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. HU. Xiangbing, Z. Yankai, L. Ming et al., “The fusion protein of HSP65 with tandem repeats of β-hCG acting as a potent tumor vaccine in suppressing hepatocarcinoma,” International Immunopharmacology, vol. 10, no. 2, pp. 230–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Michaluart, K. A. Abdallah, F. D. Lima et al., “Phase I trial of DNA-hsp65 immunotherapy for advanced squamous cell carcinoma of the head and neck,” Cancer Gene Therapy, vol. 15, no. 10, pp. 676–684, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. G. D. Victora, A. Socorro-Silva, E. C. Volsi et al., “Immune response to vaccination with DNA-hsp65 in a phase i clinical trial with head and neck cancer patients,” Cancer Gene Therapy, vol. 16, no. 7, pp. 598–608, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. D. B. Lowrie, R. E. Tascon, V. L. D. Bonato et al., “Therapy of tuberculosis in mice by DNA vaccination,” Nature, vol. 400, no. 6741, pp. 269–271, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. D. B. Lowrie and C. L. Silva, “Enhancement of immunocompetence in tuberculosis by DNA vaccination,” Vaccine, vol. 18, no. 16, pp. 1712–1716, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. C. L. Silva, V. L. D. Bonato, A. A. M. Coelho-Castelo et al., “Immunotherapy with plasmid DNA encoding mycobacterial hsp65 in association with chemotherapy is a more rapid and efficient form of treatment for tuberculosis in mice,” Gene Therapy, vol. 12, no. 3, pp. 281–287, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. D. B. Lowrie, “DNA vaccines for therapy of tuberculosis: where are we now?” Vaccine, vol. 24, no. 12, pp. 1983–1989, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. C. R. Zárate-Bladés, V. L. D. Bonato, E. L. V. da Silveira et al., “Comprehensive gene expression profiling in lungs of mice infected with Mycobacterium tuberculosis following DNAhsp65 immunotherapy,” Journal of Gene Medicine, vol. 11, no. 1, pp. 66–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. T. B. K. Reddy, R. Riley, F. Wymore et al., “TB database: an integrated platform for tuberculosis research,” Nucleic Acids Research, vol. 37, no. 1, pp. D499–D508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. J. E. Galagan, P. Sisk, C. Stolte et al., “TB database 2010: overview and update,” Tuberculosis, vol. 90, no. 4, pp. 225–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Gaucher, R. Therrien, N. Kettaf et al., “Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses,” Journal of Experimental Medicine, vol. 205, no. 13, pp. 3119–3131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. T. D. Querec, R. S. Akondy, E. K. Lee et al., “Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans,” Nature Immunology, vol. 10, no. 1, pp. 116–125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. T. P. Monath, “Yellow fever vaccine,” Expert Review of Vaccines, vol. 4, no. 4, pp. 553–574, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Pulendran, “Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology,” Nature Reviews Immunology, vol. 9, no. 10, pp. 741–747, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Young, J. Stark, and D. Kirschner, “Systems biology of persistent infection: tuberculosis as a case study,” Nature Reviews Microbiology, vol. 6, no. 7, pp. 520–528, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. I. Comas and S. Gagneux, “The past and future of tuberculosis research,” PLoS Pathogens, vol. 5, no. 10, Article ID e1000600, 2009. View at Publisher · View at Google Scholar · View at Scopus