Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011, Article ID 267539, 15 pages
http://dx.doi.org/10.1155/2011/267539
Review Article

Current Immunotherapeutic Approaches in Pancreatic Cancer

1Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
2Institute of Clinical Medicine and Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
3Department of Oncology, Institute of DNA Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
4Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA

Received 19 May 2011; Accepted 26 June 2011

Academic Editor: Bernhard Fleischer

Copyright © 2011 Shigeo Koido et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. S. F. Sener, A. Fremgen, H. R. Menck, and D. P. Winchester, “Pancreatic cancer: a report of treatment and survival trends for 100,313 patients diagnosed from 1985–1995, using the National Cancer Database,” Journal of the American College of Surgeons, vol. 189, no. 1, pp. 1–7, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. J. P. Neoptolemos, D. D. Stocken, H. Friess et al., “A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer,” New England Journal of Medicine, vol. 350, no. 12, pp. 1200–1210, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. H. A. Burris III, M. J. Moore, J. Andersen et al., “Improvements in survival and clinical benefit with gemcitabine as first- line therapy for patients with advanced pancreas cancer: a randomized trial,” Journal of Clinical Oncology, vol. 15, no. 6, pp. 2403–2413, 1997. View at Google Scholar · View at Scopus
  5. A. M. Storniolo, S. R. B. Allerheiligen, and H. L. Pearce, “Preclinical, pharmacologic, and phase I studies of gemcitabine,” Seminars in Oncology, vol. 24, no. 2, supplement 7, pp. S7-2–S7-7, 1997. View at Google Scholar · View at Scopus
  6. J. D. Berlin, P. Catalano, J. P. Thomas, J. W. Kugler, D. G. Haller, and A. B. Benson III, “Phase III study of gemcitabine in combination with fluorouracil versus gemcitabine alone in patients with advanced pancreatic carcinoma,” Journal of Clinical Oncology, vol. 20, no. 15, pp. 3270–3275, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. C. M. R. Lima, M. R. Green, R. Rotche et al., “Irinotecan plus gemcitabine results in no survival advantage compared with gemcitabine monotherapy in patients with locally advanced or metastatic pancreatic cancer despite increased tumor response rate,” Journal of Clinical Oncology, vol. 22, no. 18, pp. 3776–3783, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. C. Louvet, R. Labianca, P. Hammel et al., “Gemcitabine in combination with oxaliplatin compared with gemcitabine alone in locally advanced or metastatic pancreatic cancer: results of a GERCOR and GISCAD phase III trial,” Journal of Clinical Oncology, vol. 23, no. 15, pp. 3509–3516, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. H. Oettle, D. Richards, R. K. Ramanathan et al., “A phase III trial of pemetrexed plus gemcitabine versus gemcitabine in patients with unresectable or metastatic pancreatic cancer,” Annals of Oncology, vol. 16, no. 10, pp. 1639–1645, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. G. K. Abou-Alfa, R. Letourneau, G. Harker et al., “Randomized phase III study of exatecan and gemcitabine compared with gemcitabine alone in untreated advanced pancreatic cancer,” Journal of Clinical Oncology, vol. 24, no. 27, pp. 4441–4447, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. S. R. Bramhall, J. Schulz, J. Nemunaitis, P. D. Brown, M. Baillet, and J. A. Buckels, “A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer,” British Journal of Cancer, vol. 87, no. 2, pp. 161–167, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. E. Van Cutsem, H. van de Velde, P. Karasek et al., “Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer,” Journal of Clinical Oncology, vol. 22, no. 8, pp. 1430–1438, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. P. A. Philip, J. Benedetti, C. L. Corless et al., “Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205,” Journal of Clinical Oncology, vol. 28, no. 22, pp. 3605–3610, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. E. Van Cutsem, C. Verslype, and P. A. Grusenmeyer, “Lessons learned in the management of advanced pancreatic cancer,” Journal of Clinical Oncology, vol. 25, no. 15, pp. 1949–1952, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. P. A. Philip, “Improving treatment of pancreatic cancer,” The Lancet Oncology, vol. 9, no. 1, pp. 7–8, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. S. Cascinu, R. Berardi, R. Labianca et al., “Cetuximab plus gemcitabine and cisplatin compared with gemcitabine and cisplatin alone in patients with advanced pancreatic cancer: a randomised, multicentre, phase II trial,” The Lancet Oncology, vol. 9, no. 1, pp. 39–44, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. M. J. Moore, D. Goldstein, J. Hamm et al., “Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group,” Journal of Clinical Oncology, vol. 25, no. 15, pp. 1960–1966, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. K. Tobita, H. Kijima, S. Dowaki et al., “Epidermal growth factor receptor expression in human pancreatic cancer: significance for liver metastasis,” International Journal of Molecular Medicine, vol. 11, no. 3, pp. 305–309, 2003. View at Google Scholar
  19. S. Ueda, S. Ogata, H. Tsuda et al., “The correlation between cytoplasmic overexpression of epidermal growth factor receptor and tumor aggressiveness: poor prognosis in patients with pancreatic ductal adenocarcinoma,” Pancreas, vol. 29, no. 1, pp. E1–E8, 2004. View at Google Scholar · View at Scopus
  20. S. S. Ng, M. S. Tsao, T. Nicklee, and D. W. Hedley, “Effects of the epidermal growth factor receptor inhibitor OSI-774, Tarceva, on downstream signaling pathways and apoptosis in human pancreatic adenocarcinoma,” Molecular Cancer Therapeutics, vol. 1, no. 10, pp. 777–783, 2002. View at Google Scholar · View at Scopus
  21. T. Boon, P. G. Coulie, and B. Van den Eynde, “Tumor antigens recognized by T cells,” Immunology Today, vol. 18, no. 6, pp. 267–268, 1997. View at Google Scholar · View at Scopus
  22. T. A. Waldmann, “Immunotherapy: past, present and future,” Nature Medicine, vol. 9, no. 3, pp. 269–277, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. R. M. Steinman and J. Swanson, “The endocytic activity of dendritic cells,” Journal of Experimental Medicine, vol. 182, no. 2, pp. 283–288, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. R. M. Steinman, “The dendritic cell system and its role in immunogenicity,” Annual Review of Immunology, vol. 9, pp. 271–296, 1991. View at Google Scholar · View at Scopus
  25. F. Berard, P. Blanco, J. Davoust et al., “Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells,” Journal of Experimental Medicine, vol. 192, no. 11, pp. 1535–1544, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. O. J. Finn, “Cancer immunology,” New England Journal of Medicine, vol. 358, no. 25, pp. 2704–2715, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. F. Dieli, N. Gebbia, F. Poccia et al., “Induction of γδ T-lymphocyte effector functions by bisphosphonate zoledronic acid in cancer patients in vivo,” Blood, vol. 102, no. 6, pp. 2310–2311, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. J. Zhu and W. E. Paul, “Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors,” Immunological Reviews, vol. 238, no. 1, pp. 247–262, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. J. Banchereau and R. M. Steinman, “Dendritic cells and the control of immunity,” Nature, vol. 392, no. 6673, pp. 245–252, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. L. M. Bradley, K. Yoshimoto, and S. L. Swain, “The cytokines IL-4, IFN-γ, and IL-12 regulate the development of subsets of memory effector helper T cells in vitro,” Journal of Immunology, vol. 155, no. 4, pp. 1713–1724, 1995. View at Google Scholar · View at Scopus
  31. C. Wiethe, A. Debus, M. Mohrs, A. Steinkasserer, M. Lutz, and A. Gessner, “Dendritic cell differentiation state and their interaction with NKT cells determine Th1/Th2 differentiation in the murine model of Leishmania major infection,” Journal of Immunology, vol. 180, no. 7, pp. 4371–4381, 2008. View at Google Scholar · View at Scopus
  32. C. Dong, “TH17 cells in development: an updated view of their molecular identity and genetic programming,” Nature Reviews Immunology, vol. 8, no. 5, pp. 337–348, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. G. Canderan and P. Dellabona, “T helper 17 T cells do good for cancer immunotherapy,” Immunotherapy, vol. 2, no. 1, pp. 21–24, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. M. J. Cannon, H. Goyne, P. J.B. Stone, and M. Chiriva-Internati, “Dendritic cell vaccination against ovarian cancer-tipping the Treg/T H17 balance to therapeutic advantage?” Expert Opinion on Biological Therapy, vol. 11, no. 4, pp. 441–445, 2011. View at Publisher · View at Google Scholar · View at PubMed
  35. S. Koido, S. Homma, E. Hara et al., “In vitro generation of cytotoxic and regulatory T cells by fusions of human dendritic cells and hepatocellular carcinoma cells,” Journal of Translational Medicine, vol. 6, article 51, 2008. View at Publisher · View at Google Scholar · View at PubMed
  36. Y. Oji, S. Nakamori, M. Fujikawa et al., “Overexpression of the Wilms' tumor gene WT1 in pancreatic ductal adenocarcinoma,” Cancer Science, vol. 95, no. 7, pp. 583–587, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Ueda, Y. Miura, O. Kunihiro et al., “MUC1 overexpression is the most reliable marker of invasive carcinoma in intraductal papillary-mucinous tumor (IPMT),” Hepato-Gastroenterology, vol. 52, no. 62, pp. 398–403, 2005. View at Google Scholar · View at Scopus
  38. K. Seki, T. Suda, Y. Aoyagi et al., “Diagnosis of pancreatic adenocarcinoma by detection of human telomerase reverse transcriptase messenger RNA in pancreatic juice with sample qualification,” Clinical Cancer Research, vol. 7, no. 7, pp. 1976–1981, 2001. View at Google Scholar · View at Scopus
  39. M. K. Gjertsen, A. Bakka, J. Breivik et al., “Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation,” Lancet, vol. 346, no. 8987, pp. 1399–1400, 1995. View at Google Scholar · View at Scopus
  40. M. Wobser, P. Keikavoussi, V. Kunzmann, M. Weininger, M. H. Andersen, and J. C. Becker, “Complete remission of liver metastasis of pancreatic cancer under vaccination with a HLA-A2 restricted peptide derived from the universal tumor antigen survivin,” Cancer Immunology, Immunotherapy, vol. 55, no. 10, pp. 1294–1298, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. K. Yamaguchi, M. Enjoji, and M. Tsuneyoshi, “Pancreatoduodenal carcinoma: a clinicopathologic study of 304 patients and immunohistochemical observation for CEA and CA19-9,” Journal of Surgical Oncology, vol. 47, no. 3, pp. 148–154, 1991. View at Google Scholar · View at Scopus
  42. M. Komoto, B. Nakata, R. Amano et al., “HER2 overexpression correlates with survival after curative resection of pancreatic cancer,” Cancer Science, vol. 100, no. 7, pp. 1243–1247, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. H. Maacke, A. Kessler, W. Schmiegel et al., “Overexpression of p53 protein during pancreatitis,” British Journal of Cancer, vol. 75, no. 10, pp. 1501–1504, 1997. View at Google Scholar · View at Scopus
  44. S. Koido, S. Homma, E. Hara et al., “Regulation of tumor immunity by tumor/dendritic cell fusions,” Clinical and Developmental Immunology, vol. 2010, Article ID 516768, 2010. View at Publisher · View at Google Scholar · View at PubMed
  45. D. Mougiakakos, A. Choudhury, A. Lladser, R. Kiessling, and C. C. Johansson, “Regulatory T cells in cancer,” Advances in cancer research, vol. 107, pp. 57–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. E. M. Shevach, “Mechanisms of foxp3+ T regulatory cell-mediated suppression,” Immunity, vol. 30, no. 5, pp. 636–645, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. A. W. Purcell, J. McCluskey, and J. Rossjohn, “More than one reason to rethink the use of peptides in vaccine design,” Nature Reviews Drug Discovery, vol. 6, no. 5, pp. 404–414, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. M. S. Bijker, C. J. Melief, R. Offringa, and S. H. van der Burg, “Design and development of synthetic peptide vaccines: past, present and future,” Expert Review of Vaccines, vol. 6, no. 4, pp. 591–603, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. H. Yanagimoto, T. Mine, K. Yamamoto et al., “Immunological evaluation of personalized peptide vaccination with gemcitabine for pancreatic cancer,” Cancer Science, vol. 98, no. 4, pp. 605–611, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. M. Miyazawa, R. Ohsawa, T. Tsunoda et al., “Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer,” Cancer Science, vol. 101, no. 2, pp. 433–439, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. S. Kanodia and W. M. Kast, “Peptide-based vaccines for cancer: realizing their potential,” Expert Review of Vaccines, vol. 7, no. 10, pp. 1533–1545, 2008. View at Google Scholar
  52. C. J. Voskens, S. E. Strome, and D. A. Sewell, “Synthetic peptide-based cancer vaccines: lessons learned and hurdles to overcome,” Current Molecular Medicine, vol. 9, no. 6, pp. 683–693, 2009. View at Google Scholar
  53. S. Mocellin, P. Pilati, and D. Nitti, “Peptide-based anticancer vaccines: recent advances and future perspectives,” Current Medicinal Chemistry, vol. 16, no. 36, pp. 4779–4796, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Yanagimoto, S. Takai, S. Satoi et al., “Impaired function of circulating dendritic cells in patients with pancreatic cancer,” Clinical Immunology, vol. 114, no. 1, pp. 52–60, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. S. Koido, E. Hara, S. Homma et al., “Dendritic/pancreatic carcinoma fusions for clinical use: comparative functional analysis of healthy- versus patient-derived fusions,” Clinical Immunology, vol. 135, no. 3, pp. 384–400, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. M. K. Gjertsen, T. Buanes, A. R. Rosseland et al., “Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: clinical and immunological responses in patients with pancreatic adenocarcinoma,” International Journal of Cancer, vol. 92, no. 3, pp. 441–450, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. G. K. Abou-Alfa, P. B. Chapman, J. Feilchenfeldt et al., “Targeting mutated K-ras in pancreatic adenocarcinoma using an adjuvant vaccine,” American Journal of Clinical Oncology, vol. 34, no. 3, pp. 321–325, 2011. View at Publisher · View at Google Scholar · View at PubMed
  58. K. Yamamoto, T. Ueno, T. Kawaoka et al., “MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer,” Anticancer Research, vol. 25, no. 5, pp. 3575–3579, 2005. View at Google Scholar · View at Scopus
  59. R. K. Ramanathan, K. M. Lee, J. McKolanis et al., “Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer,” Cancer Immunology, Immunotherapy, vol. 54, no. 3, pp. 254–264, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. S. L. Bernhardt, M. K. Gjertsen, S. Trachsel et al., “Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating phase I/II study,” British Journal of Cancer, vol. 95, no. 11, pp. 1474–1482, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. K. Itoh, A. Yamada, T. Mine, and M. Noguchi, “Recent advances in cancer vaccines: an overview,” Japanese Journal of Clinical Oncology, vol. 39, no. 2, pp. 73–80, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. K. Yamamoto, T. Mine, K. Katagiri et al., “Immunological evaluation of personalized peptide vaccination for patients with pancreatic cancer,” Oncology Reports, vol. 13, no. 5, pp. 874–883, 2005. View at Google Scholar · View at Scopus
  63. C. J. M. Melief and S. H. van der Burg, “Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines,” Nature Reviews Cancer, vol. 8, no. 5, pp. 351–360, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. M. S. Bijker, S. J. F. van den Eeden, K. L. Franken, C. J. M. Melief, S. H. van der Burg, and R. Offringa, “Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation,” European Journal of Immunology, vol. 38, no. 4, pp. 1033–1042, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. S. Wedén, M. Klemp, I. P. Gladhaug et al., “Long-term follow-up of patients with resected pancreatic cancer following vaccination against mutant K-ras,” International Journal of Cancer, vol. 128, no. 5, pp. 1120–1128, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. S. Koido, E. Hara, S. Homma et al., “Dendritic cells fused with allogeneic colorectal cancer cell line present multiple colorectal cancer-specific antigens and induce antitumor immunity against autologous tumor cells,” Clinical Cancer Research, vol. 11, no. 21, pp. 7891–7900, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. E. M. Jaffee, R. H. Hruban, B. Biedrzycki et al., “Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation,” Journal of Clinical Oncology, vol. 19, no. 1, pp. 145–156, 2001. View at Google Scholar
  68. D. Laheru, B. Biedrzycki, and E. M. Jaffee, “Immunologic approaches to the management of pancreatic cancer,” Cancer Journal, vol. 7, no. 4, pp. 324–337, 2001. View at Google Scholar · View at Scopus
  69. K. M. Hege, K. Jooss, and D. Pardoll, “GM-CSF gene-modifed cancer cell immunotherapies: of mice and men,” International Reviews of Immunology, vol. 25, no. 5-6, pp. 321–352, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. D. Laheru, E. Lutz, J. Burke et al., “Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation,” Clinical Cancer Research, vol. 14, no. 5, pp. 1455–1463, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. R. Förster, A. Schubel, D. Breitfeld et al., “CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs,” Cell, vol. 99, no. 1, pp. 23–33, 1999. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Banchereau and A. K. Palucka, “Dendritic cells as therapeutic vaccines against cancer,” Nature Reviews Immunology, vol. 5, no. 4, pp. 296–306, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. F. O. Nestle, S. Alijagic, M. Gilliet et al., “Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells,” Nature Medicine, vol. 4, no. 3, pp. 328–332, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Mackensen, B. Herbst, J. L. Chen et al., “Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells,” International Journal of Cancer, vol. 89, no. 2, pp. 385–392, 2000. View at Google Scholar · View at Scopus
  75. A. K. Palucka, H. Ueno, J. Connolly et al., “Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity,” Journal of Immunotherapy, vol. 29, no. 5, pp. 545–557, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. S. K. Nair, D. Boczkowski, M. Morse, R. I. Cumming, H. K. Lyerly, and E. Gilboa, “Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA,” Nature Biotechnology, vol. 16, no. 4, pp. 364–369, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. W. W. Leitner, H. Ying, and N. P. Restifo, “DNA and RNA-based vaccines: principles, progress and prospects,” Vaccine, vol. 18, no. 9-10, pp. 765–777, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. E. Gilboa and J. Vieweg, “Cancer immunotherapy with mRNA-transfected dendritic cells,” Immunological Reviews, vol. 199, pp. 251–263, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. J. Gong, D. Chen, M. Kashiwaba, and D. Kufe, “Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells,” Nature Medicine, vol. 3, no. 5, pp. 558–561, 1997. View at Google Scholar · View at Scopus
  80. S. Koido, E. Hara, S. Homma, K. Fujise, J. Gong, and H. Tajiri, “Dendritic/tumor fusion cell-based vaccination against cancer,” Archivum Immunologiae et Therapiae Experimentalis, vol. 55, no. 5, pp. 281–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Gong, S. Koido, and S. K. Calderwood, “Cell fusion: from hybridoma to dendritic cell-based vaccine,” Expert Review of Vaccines, vol. 7, no. 7, pp. 1055–1068, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. S. Koido, E. Hara, S. Homma, T. Ohkusa, J. Gong, and H. Tajiri, “Cancer immunotherapy by fusions of dendritic cells and tumor cells,” Immunotherapy, vol. 1, no. 1, pp. 49–62, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. D. Avigan, B. Vasir, J. Gong et al., “Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses,” Clinical Cancer Research, vol. 10, no. 14, pp. 4699–4708, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. T. Kikuchi, Y. Akasaki, T. Abe et al., “Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12,” Journal of Immunotherapy, vol. 27, no. 6, pp. 452–459, 2004. View at Google Scholar · View at Scopus
  85. S. Homma, T. Kikuchi, N. Ishiji et al., “Cancer immunotherapy by fusions of dendritic and tumour cells and rh-IL-12,” European Journal of Clinical Investigation, vol. 35, no. 4, pp. 279–286, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. S. Homma, Y. Sagawa, M. Ito, T. Ohno, and G. Toda, “Cancer immunotherapy using dendritic/tumour-fusion vaccine induces elevation of serum anti-nuclear antibody with better clinical responses,” Clinical and Experimental Immunology, vol. 144, no. 1, pp. 41–47, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. C. K. Tang, M. Katsara, and V. Apostolopoulos, “Strategies used for MUC1 immunotherapy: human clinical studies,” Expert Review of Vaccines, vol. 7, no. 7, pp. 963–975, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. A. J. Lepisto, A. J. Moser, H. Zeh et al., “A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors,” Cancer Therapy, vol. 6, no. B, pp. 955–964, 2008. View at Google Scholar
  89. G. Pecher, A. Häring, L. Kaiser, and E. Thiel, “Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a phase I/II clinical trial,” Cancer Immunology, Immunotherapy, vol. 51, no. 11-12, pp. 669–673, 2002. View at Publisher · View at Google Scholar · View at PubMed
  90. G. L. Beatty and R. H. Vonderheide, “Telomerase as a universal tumor antigen for cancer vaccines,” Expert Review of Vaccines, vol. 7, no. 7, pp. 881–887, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. S. Sæbøe-Larssen, E. Fossberg, and G. Gaudernack, “mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT),” Journal of Immunological Methods, vol. 259, no. 1-2, pp. 191–203, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. P. F. Brunsvig, S. Aamdal, M. K. Gjertsen et al., “Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer,” Cancer Immunology, Immunotherapy, vol. 55, no. 12, pp. 1553–1564, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. E. M.I. Suso, S. Dueland, A. -M. Rasmussen et al., “hTERT mRNA dendritic cell vaccination: complete response in a pancreatic cancer patient associated with response against several hTERT epitopes,” Cancer Immunology, Immunotherapy, pp. 1–10, 2011. View at Google Scholar
  94. Y. Kimura, K. Imai, K. Shimamura et al., “Clinical and immunologic evaluation of dendritic cell-based immunotherapy in combination with gemcitabine and/or S-1 in the patients with advanced pancreatic carcinoma,” Pancreas. In press.
  95. G. Eschenburg, A. Stermann, R. Preissner, H. -A. Meyer, and H. N. Lode, “DNA vaccination: using the patient's immune system to overcome cancer,” Clinical and Developmental Immunology, vol. 2010, Article ID 169484, 2010. View at Publisher · View at Google Scholar · View at PubMed
  96. Y. Rong, D. Jin, W. Wu et al., “Induction of protective and therapeutic anti-pancreatic cancer immunity using a reconstructed MUC1 DNA vaccine,” BMC Cancer, vol. 9, article 191, 2009. View at Publisher · View at Google Scholar · View at PubMed
  97. K. Zhu, H. Qin, S. C. Cha et al., “Survivin DNA vaccine generated specific antitumor effects in pancreatic carcinoma and lymphoma mouse models,” Vaccine, vol. 25, no. 46, pp. 7955–7961, 2007. View at Publisher · View at Google Scholar · View at PubMed
  98. D. I. Gabrilovich, “Combination of chemotherapy and immunotherapy for cancer: a paradigm revisited,” Lancet Oncology, vol. 8, no. 1, pp. 2–3, 2007. View at Publisher · View at Google Scholar · View at PubMed
  99. B. D. Smith, Y. L. Kasamon, J. Kowalski et al., “K562/GM-CSF immunotherapy reduces tumor burden in chronic myeloid leukemia patients with residual disease on imatinib mesylate,” Clinical Cancer Research, vol. 16, no. 1, pp. 338–347, 2010. View at Publisher · View at Google Scholar · View at PubMed
  100. J. M. Plate, A. E. Plate, S. Shott, S. Bograd, and J. E. Harris, “Effect of gemcitabine on immune cells in subjects with adenocarcinoma of the pancreas,” Cancer Immunology, Immunotherapy, vol. 54, no. 9, pp. 915–925, 2005. View at Publisher · View at Google Scholar · View at PubMed
  101. J. M. Hou, J. Y. Liu, L. Yang et al., “Combination of low-dose gemcitabine and recombinant quail vascular endothelial growth factor receptor-2 as a vaccine induces synergistic antitumor activities,” Oncology, vol. 69, no. 1, pp. 81–87, 2005. View at Publisher · View at Google Scholar · View at PubMed
  102. A. Soeda, Y. Morita-Hoshi, H. Makiyama et al., “Regular dose of gemcitabine induces an increase in CD14+ monocytes and CD11c+ dendritic cells in patients with advanced pancreatic cancer,” Japanese Journal of Clinical Oncology, vol. 39, no. 12, pp. 797–806, 2009. View at Publisher · View at Google Scholar · View at PubMed
  103. P. Correale, M. G. Cusi, M. T. Del Vecchio et al., “Dendritic cell-mediated cross-presentation of antigens derived from colon carcinoma cells exposed to a highly cytotoxic multidrug regimen with gemcitabine, oxaliplatin, 5-fluorouracil, and leucovorin, elicits a powerful human antigen-specific CTL response with antitumor activity in vitro,” Journal of Immunology, vol. 175, no. 2, pp. 820–828, 2005. View at Google Scholar
  104. A. K. Nowak, R. A. Lake, A. L. Marzo et al., “Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells,” Journal of Immunology, vol. 170, no. 10, pp. 4905–4913, 2003. View at Google Scholar
  105. A. K. Nowak, B. W. S. Robinson, and R. A. Lake, “Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors,” Cancer Research, vol. 63, no. 15, pp. 4490–4496, 2003. View at Google Scholar
  106. M. Dauer, J. Herten, C. Bauer et al., “Chemosensitization of pancreatic carcinoma cells to enhance T cell-mediated cytotoxicity induced by tumor lysate-pulsed dendritic cells,” Journal of Immunotherapy, vol. 28, no. 4, pp. 332–342, 2005. View at Google Scholar
  107. E. Suzuki, V. Kapoor, A. S. Jassar, L. R. Kaiser, and S. M. Albelda, “Gemcitabine selectively eliminates splenic Gr-1+/CD11b + myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity,” Clinical Cancer Research, vol. 11, no. 18, pp. 6713–6721, 2005. View at Publisher · View at Google Scholar · View at PubMed
  108. S. Nagaraj, J. I. Youn, H. Weber et al., “Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer,” Clinical Cancer Research, vol. 16, no. 6, pp. 1812–1823, 2010. View at Publisher · View at Google Scholar · View at PubMed
  109. C. Bauer, F. Bauernfeind, A. Sterzik et al., “Dendritic cell-based vaccination combined with gemcitabine increases survival in a murine pancreatic carcinoma model,” Gut, vol. 56, no. 9, pp. 1275–1282, 2007. View at Publisher · View at Google Scholar · View at PubMed
  110. R. Ramakrishnan, D. Assudani, S. Nagaraj et al., “Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice,” Journal of Clinical Investigation, vol. 120, no. 4, pp. 1111–1124, 2010. View at Publisher · View at Google Scholar · View at PubMed
  111. D. Weng, B. Song, J. Durfee et al., “Induction of cytotoxic T lymphocytes against ovarian cancer-initiating cells,” International Journal of Cancer, vol. 129, no. 8, pp. 1990–2001, 2011. View at Publisher · View at Google Scholar · View at PubMed
  112. Z. Wang, Y. Li, A. Ahmad et al., “Pancreatic cancer: understanding and overcoming chemoresistance,” Nature Reviews Gastroenterology and Hepatology, vol. 8, no. 1, pp. 27–33, 2011. View at Publisher · View at Google Scholar · View at PubMed
  113. M. Dean, T. Fojo, and S. Bates, “Tumour stem cells and drug resistance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 275–284, 2005. View at Publisher · View at Google Scholar · View at PubMed
  114. Z. Du, R. Qin, C. Wei et al., “Pancreatic cancer cells resistant to chemoradiotherapy rich in “stem-cell-like” tumor cells,” Digestive Diseases and Sciences, vol. 56, no. 3, pp. 741–750, 2010. View at Google Scholar
  115. C. Li, D. G. Heidt, P. Dalerba et al., “Identification of pancreatic cancer stem cells,” Cancer Research, vol. 67, no. 3, pp. 1030–1037, 2007. View at Publisher · View at Google Scholar · View at PubMed
  116. C. J. Lee, J. Dosch, and D. M. Simeone, “Pancreatic cancer stem cells,” Journal of Clinical Oncology, vol. 26, no. 17, pp. 2806–2812, 2008. View at Publisher · View at Google Scholar · View at PubMed
  117. Y. H. Wang, F. Li, B. Luo et al., “A side population of cells from a human pancreatic carcinoma cell line harbors cancer stem cell characteristics,” Neoplasma, vol. 56, no. 5, pp. 371–378, 2009. View at Publisher · View at Google Scholar
  118. S. -N. Zhang, F. -T. Huang, Y. -J. Huang, W. Zhong, and Z. Yu, “Characterization of a cancer stem cell-like side population derived from human pancreatic adenocarcinoma cells,” Tumori, vol. 96, no. 6, pp. 985–992, 2010. View at Google Scholar
  119. P. H. Sung, J. Wen, S. Bang, S. Park, and Y. S. Si, “CD44-positive cells are responsible for gemcitabine resistance in pancreatic cancer cells,” International Journal of Cancer, vol. 125, no. 10, pp. 2323–2331, 2009. View at Publisher · View at Google Scholar · View at PubMed
  120. S. Inoda, Y. Hirohashi, T. Torigoe et al., “Cytotoxic T lymphocytes efficiently recognize human colon cancer stem-like cells,” American Journal of Pathology, vol. 178, no. 4, pp. 1805–1813, 2011. View at Publisher · View at Google Scholar · View at PubMed
  121. Y. Hirohashi, T. Torigoe, S. Inoda et al., “Immune response against tumor antigens expressed on human cancer stem-like cells/tumor-initiating cells,” Immunotherapy, vol. 2, no. 2, pp. 201–211, 2010. View at Publisher · View at Google Scholar · View at PubMed
  122. K. Engelmann, H. Shen, and O. J. Finn, “MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1,” Cancer Research, vol. 68, no. 7, pp. 2419–2426, 2008. View at Publisher · View at Google Scholar · View at PubMed
  123. M. A. Cheever, J. P. Allison, A. S. Ferris et al., “The prioritization of cancer antigens: a National Cancer Institute pilot project for the acceleration of translational research,” Clinical Cancer Research, vol. 15, no. 17, pp. 5323–5337, 2009. View at Publisher · View at Google Scholar · View at PubMed
  124. H. Sugiyama, “WT1 (Wilms' tumor gene 1): biology and cancer immunotherapy,” Japanese Journal of Clinical Oncology, vol. 40, no. 5, pp. 377–387, 2010. View at Publisher · View at Google Scholar · View at PubMed
  125. P. Correale, A. Aquino, A. Giuliani et al., “Treatment of colon and breast carcinoma cells with 5-fluorouracil enhances expression of carcinoembryonic antigen and susceptibility to HLA-A(*)02.01 restricted, CEA-peptide-specific Cytotoxic T cells in vitro,” International Journal of Cancer, vol. 104, no. 4, pp. 437–445, 2003. View at Publisher · View at Google Scholar · View at PubMed
  126. P. Correale, M. T. Del Vecchio, M. La Placa et al., “Chemotherapeutic drugs may be used to enhance the killing efficacy of human tumor antigen peptide-specific CTLs,” Journal of Immunotherapy, vol. 31, no. 2, pp. 132–147, 2008. View at Publisher · View at Google Scholar · View at PubMed
  127. R. Ramakrishnan and D. I. Gabrilovich, “Mechanism of synergistic effect of chemotherapy and immunotherapy of cancer,” Cancer Immunology, Immunotherapy, vol. 60, no. 3, pp. 419–423, 2011. View at Publisher · View at Google Scholar · View at PubMed
  128. H. Yanagimoto, H. Shiomi, S. Satoi et al., “A phase II study of personalized peptide vaccination combined with gemcitabine for non-resectable pancreatic cancer patients,” Oncology Reports, vol. 24, no. 3, pp. 795–801, 2010. View at Publisher · View at Google Scholar
  129. Y. Hirooka, A. Itoh, H. Kawashima et al., “A combination therapy of gemcitabine with immunotherapy for patients with inoperable locally advanced pancreatic cancer,” Pancreas, vol. 38, no. 3, pp. e69–e74, 2009. View at Publisher · View at Google Scholar · View at PubMed
  130. Y. Oka, A. Tsuboi, T. Taguchi et al., “Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 38, pp. 13885–13890, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  131. A. Takahara, S. Koido, M. Ito et al., “Gemcitabine enhances Wilms' tumor gene WT1 expression and sensitizes human pancreatic cancer cells with WT1-specific T-cell-mediated antitumor immune response,” Cancer Immunology, Immunotherapy, vol. 60, no. 9, pp. 1289–1297, 2011. View at Google Scholar