Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011 (2011), Article ID 439053, 15 pages
http://dx.doi.org/10.1155/2011/439053
Review Article

From Tumor Immunosuppression to Eradication: Targeting Homing and Activity of Immune Effector Cells to Tumors

1Molecular Virology Section, Department of Medical Microbiology, University Medical Center Groningen (UMCG), University of Groningen, HPC EB88, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
2Department of Gynecology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands

Received 30 June 2011; Accepted 6 September 2011

Academic Editor: D. Craig Hooper

Copyright © 2011 Oana Draghiciu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. M. Burnet, “The concept of immunological surveillance,” Progress in Experimental Tumor Research, vol. 13, pp. 1–27, 1970. View at Google Scholar · View at Scopus
  2. K. J. Malmberg, “Effective immunotherapy against cancer: a question of overcoming immune suppression and immune escape?” Cancer Immunology, Immunotherapy, vol. 53, no. 10, pp. 879–892, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Y. Mapara and M. Sykes, “Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance,” Journal of Clinical Oncology, vol. 22, no. 6, pp. 1136–1151, 2004. View at Publisher · View at Google Scholar
  4. M. J. Smyth, D. I. Godfrey, and J. A. Trapani, “A fresh look at tumor immunosurveillance and immunotherapy,” Nature Immunology, vol. 2, no. 4, pp. 293–299, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old, and R. D. Schreiber, “Cancer immunoediting: from immunosurveillance to tumor escape,” Nature Immunology, vol. 3, no. 11, pp. 991–998, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. G. P. Dunn, C. M. Koebel, and R. D. Schreiber, “Interferons, immunity and cancer immunoediting,” Nature Reviews Immunology, vol. 6, no. 11, pp. 836–848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. A. Sogn, “Tumor immunology: the glass is half full,” Immunity, vol. 9, no. 6, pp. 757–763, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. D. I. Gabrilovich, I. F. Ciernik, and D. P. Carbone, “Dendritic cells in antitumor immune responses I. Defective antigen presentation in tumor-bearing hosts,” Cellular Immunology, vol. 170, no. 1, pp. 101–110, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. A. J. Troy, K. L. Summers, P. J. Davidson, C. H. Atkinson, and D. N. Hart, “Minimal recruitment and activation of dendritic cells within renal cell carcinoma,” Clinical Cancer Research, vol. 4, no. 3, pp. 585–593, 1998. View at Google Scholar
  10. D. I. Gabrilovich, J. Corak, I. F. Ciernik, D. Kavanaugh, and D. P. Carbone, “Decreased antigen presentation by dendritic cells in patients with breast cancer,” Clinical Cancer Research, vol. 3, no. 3, pp. 483–490, 1997. View at Google Scholar
  11. B. J. Coventry, P. L. Lee, D. Gibbs, and D. N. Hart, “Dendritic cell density and activation status in human breast cancer—CD 1 a, CMRF-44, CMRF-56 and CD-83 expression,” British Journal of Cancer, vol. 86, no. 4, pp. 546–551, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Fiore, M. S. von Bergwelt-Baildon, U. Drebber et al., “Dendritic cells are significantly reduced in non-Hodgkin's lymphoma and express less CCR7 and CD62L,” Leukemia and Lymphoma, vol. 47, no. 4, pp. 613–622, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. S. von Bergwelt-Baildon, A. Popov, T. Saric et al., “CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition,” Blood, vol. 108, no. 1, pp. 228–237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. R. Schoenborn and C. B. Wilson, “Regulation of interferon-γ during innate and adaptive immune responses,” Advances in Immunology, vol. 96, pp. 41–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. E. Demeure, L. P. Yang, D. G. Byun, H. Ishihara, N. Vezzio, and G. Delespesse, “Human naive CD4 T cells produce interleukin-4 at priming and acquire a Th2 phenotype upon repetitive stimulations in neutral conditions,” European Journal of Immunology, vol. 25, no. 9, pp. 2722–2725, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Tomiyama, H. Takata, T. Matsuda, and M. Takiguchi, “Phenotypic classification of human CD8+ T cells reflecting their function: inverse correlation between quantitative expression of CD27 and cytotoxic effector function,” European Journal of Immunology, vol. 34, no. 4, pp. 999–1010, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. M. Curtsinger, D. C. Lins, and M. F. Mescher, “CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells (CD44low, Ly-6C-) to TCR/CD8 signaling in response to antigen,” Journal of Immunology, vol. 160, no. 7, pp. 3236–3243, 1998. View at Google Scholar · View at Scopus
  18. M. O. Kilinc, T. Gu, J. L. Harden, L. P. Virtuoso, and N. K. Egilmez, “Central role of tumor-associated CD8+ T effector/memory cells in restoring systemic antitumor immunity,” Journal of Immunology, vol. 182, no. 7, pp. 4217–4225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. E. J. Wherry, V. Teichgräber, T. C. Becker et al., “Lineage relationship and protective immunity of memory CD8 T cell subsets,” Nature Immunology, vol. 4, no. 3, pp. 225–234, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. C. A. Klebanoff, L. Gattinoni, P. Torabi-Parizi et al., “Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 27, pp. 9571–9576, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. O. Kilinc, K. S. Aulakh, R. E. Nair et al., “Reversing tumor immune suppression with intratumoral IL-12: activation of tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and infiltration of CD8+ T effectors,” Journal of Immunology, vol. 177, no. 10, pp. 6962–6973, 2006. View at Google Scholar · View at Scopus
  22. R. M. Pitti, S. A. Marsters, D. A. Lawrence et al., “Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer,” Nature, vol. 396, no. 6712, pp. 699–703, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. B. R. Gastman, Y. Atarashi, T. E. Reichert et al., “Fas ligand is expressed on human squamous cell carcinomas of the head and neck, and it promotes apoptosis of T lymphocytes,” Cancer Research, vol. 59, no. 20, pp. 5356–5364, 1999. View at Google Scholar · View at Scopus
  24. N. Özören and W. S. El-Deiry, “Cell surface death receptor signaling in normal and cancer cells,” Seminars in Cancer Biology, vol. 13, no. 2, pp. 135–147, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. O. Li and R. A. Flavell, “TGF-β: a master of all T cell trades,” Cell, vol. 134, no. 3, pp. 392–404, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. D. A. Thomas and J. Massagué, “TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance,” Cancer Cell, vol. 8, no. 5, pp. 369–380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Yu and N. P. Restifo, “Cancer vaccines: progress reveals new complexities,” The Journal of Clinical Investigation, vol. 110, no. 3, pp. 289–294, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. P. A. Antony and N. P. Restifo, “Do CD4+CD25+ immunoregulatory T cells hinder tumor immunotherapy?” Journal of Immunotherapy, vol. 25, no. 3, pp. 202–206, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Zou, “Immunosuppressive networks in the tumour environment and their therapeutic relevance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 263–274, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. K. A. Gelderman, S. Tomlinson, G. D. Ross, and A. Gorter, “Complement function in mAb-mediated cancer immunotherapy,” Trends in Immunology, vol. 25, no. 3, pp. 158–164, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Lamagna, M. Aurrand-Lions, and B. A. Imhof, “Dual role of macrophages in tumor growth and angiogenesis,” Journal of Leukocyte Biology, vol. 80, no. 4, pp. 705–713, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. C. M. Ohri, A. Shikotra, R. H. Green, D. A. Waller, and P. Bradding, “Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival,” European Respiratory Journal, vol. 33, no. 1, pp. 118–126, 2009. View at Publisher · View at Google Scholar
  33. B. Bonnotte, N. Larmonier, N. Favre et al., “Identification of tumor-infiltrating macrophages as the killers of tumor cells after immunization in a rat model system,” Journal of Immunology, vol. 167, no. 9, pp. 5077–5083, 2001. View at Google Scholar · View at Scopus
  34. G. P. Dunn, L. J. Old, and R. D. Schreiber, “The immunobiology of cancer immunosurveillance and immunoediting,” Immunity, vol. 21, no. 2, pp. 137–148, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Lucas, D. Abraham, and S. Aharinejad, “Modulation of tumor associated macrophages in solid tumors,” Frontiers in Bioscience, vol. 13, pp. 5580–5588, 2008. View at Google Scholar · View at Scopus
  37. C. Murdoch, A. Giannoudis, and C. E. Lewis, “Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues,” Blood, vol. 104, no. 8, pp. 2224–2234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Bergers and L. M. Coussens, “Extrinsic regulators of epithelial tumor progression: metalloproteinases,” Current Opinion in Genetics and Development, vol. 10, no. 1, pp. 120–127, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. A. P. Lepique, K. R. Daghastanli, I. M. Cuccovia, and L. L. Villa, “HPV16 tumor associated macrophages suppress antitumor T cell responses,” Clinical Cancer Research, vol. 15, no. 13, pp. 4391–4400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Bolpetti, J. S. Silva, L. L. Villa, and A. P. Lepique, “Interleukin-10 production by tumor infiltrating macrophages plays a role in Human Papillomavirus 16 tumor growth,” BMC Immunology, vol. 11, article 27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Peranzoni, S. Zilio, I. Marigo et al., “Myeloid-derived suppressor cell heterogeneity and subset definition,” Current Opinion in Immunology, vol. 22, no. 2, pp. 238–244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. D. I. Gabrilovich and S. Nagaraj, “Myeloid-derived suppressor cells as regulators of the immune system,” Nature Reviews Immunology, vol. 9, no. 3, pp. 162–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Zhu, Y. Bando, S. Xiao et al., “CD11b+Ly-6Chi suppressive monocytes in experimental autoimmune encephalomyelitis,” Journal of Immunology, vol. 179, no. 8, pp. 5228–5237, 2007. View at Google Scholar · View at Scopus
  44. S. Ostrand-Rosenberg and P. Sinha, “Myeloid-derived suppressor cells: linking inflammation and cancer,” Journal of Immunology, vol. 182, no. 8, pp. 4499–4506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Kusmartsev, Y. Nefedova, D. Yoder, and D. I. Gabrilovich, “antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species,” Journal of Immunology, vol. 172, no. 2, pp. 989–999, 2004. View at Google Scholar · View at Scopus
  46. A. C. Ochoa, A. H. Zea, C. Hernandez, and P. C. Rodriguez, “Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma,” Clinical Cancer Research, vol. 13, no. 2, pp. 721s–726s, 2007. View at Publisher · View at Google Scholar
  47. B. Almand, J. I. Clark, E. Nikitina et al., “Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer,” Journal of Immunology, vol. 166, no. 1, pp. 678–689, 2001. View at Google Scholar · View at Scopus
  48. D. I. Gabrilovich, V. Bronte, S. -H. Chen et al., “The terminology issue for myeloid-derived suppressor cells,” Cancer Research, vol. 67, no. 1, p. 425, 2007. View at Publisher · View at Google Scholar
  49. P. Sinha, V. K. Clements, S. Miller, and S. Ostrand-Rosenberg, “Tumor immunity: a balancing act between T cell activation, macrophage activation and tumor-induced immune suppression,” Cancer Immunology, Immunotherapy, vol. 54, no. 11, pp. 1137–1142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Sinha, V. K. Clements, and S. Ostrand-Rosenberg, “Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis,” Cancer Research, vol. 65, no. 24, pp. 11743–11751, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Serafini, I. Borrello, and V. Bronte, “Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression,” Seminars in Cancer Biology, vol. 16, no. 1, pp. 53–65, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Yanagisawa, M. A. Exley, X. Jiang, N. Ohkochi, M. Taniguchi, and K. I. Seino, “Hyporesponsiveness to natural killer T-cell ligand α- galactosylceramide in cancer-bearing state mediated by CD11b+ Gr-1+ cells producing nitric oxide,” Cancer Research, vol. 66, no. 23, pp. 11441–11446, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Yang, Z. Cai, Y. Zhang, W. H. Yutzy IIII, K. F. Roby, and R. B. S. Roden, “CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells,” Cancer Research, vol. 66, no. 13, pp. 6807–6815, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. V. Bronte and P. Zanovello, “Regulation of immune responses by L-arginine metabolism,” Nature Reviews Immunology, vol. 5, no. 8, pp. 641–654, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. P. C. Rodríguez and A. C. Ochoa, “Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives,” Immunological Reviews, vol. 222, no. 1, pp. 180–191, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. O. Goño, P. Alcaide, and M. Fresno, “Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1+)CD11b+ immature myeloid suppressor cells,” International Immunology, vol. 14, no. 10, pp. 1125–1134, 2002. View at Google Scholar · View at Scopus
  57. O. Harari and J. K. Liao, “Inhibition of MHC II gene transcription by nitric oxide and antioxidants,” Current Pharmaceutical Design, vol. 10, no. 8, pp. 893–898, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. R. M. Bingisser, P. A. Tilbrook, P. G. Holt, and U. R. Kees, “Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway,” Journal of Immunology, vol. 160, no. 12, pp. 5729–5734, 1998. View at Google Scholar · View at Scopus
  59. S. Nagaraj and D. I. Gabrilovich, “Myeloid-derived suppressor cells in human cancer,” Cancer Journal, vol. 16, no. 4, pp. 348–353, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. M. K. Srivastava, P. Sinha, V. K. Clements, P. Rodriguez, and S. Ostrand-Rosenberg, “Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine,” Cancer Research, vol. 70, no. 1, pp. 68–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. B. G. Bentz, G. K. Haines III, and J. A. Radosevich, “Increased protein nitrosylation in head and neck squamous cell carcinogenesis,” Head and Neck, vol. 22, no. 1, pp. 64–70, 2000. View at Google Scholar · View at Scopus
  62. P. Sinha, V. K. Clements, A. M. Fulton, and S. Ostrand-Rosenberg, “Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells,” Cancer Research, vol. 67, no. 9, pp. 4507–4513, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Tomihara, M. Guo, T. Shin et al., “Antigen-specific immunity and cross-priming by epithelial ovarian carcinoma-induced CD11b+Gr-1+ cells,” Journal of Immunology, vol. 184, no. 11, pp. 6151–6160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. D. Kabelitz, D. Wesch, and H. H. Oberg, “Regulation of regulatory T cells: role of dendritic cells and toll-like receptors,” Critical Reviews in Immunology, vol. 26, no. 4, pp. 291–305, 2006. View at Google Scholar · View at Scopus
  65. J. Visser, H. W. Nijman, B. N. Hoogenboom et al., “Frequencies and role of regulatory T cells in patients with (pre)malignant cervical neoplasia,” Clinical and Experimental Immunology, vol. 150, no. 2, pp. 199–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. J. D. Fontenot, M. A. Gavin, and A. Y. Rudensky, “Foxp3 programs the development and function of CD4+CD25+ regulatory T cells,” Nature Immunology, vol. 4, no. 4, pp. 330–336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. E. M. Shevach, “Fatal attraction: tumors beckon regulatory T cells,” Nature Medicine, vol. 10, no. 9, pp. 900–901, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. E. M. Shevach, “Regulatory T cells. Introduction,” Seminars in Immunology, vol. 16, no. 2, pp. 69–71, 2004. View at Google Scholar
  69. A. O'Garra and P. Vieira, “Regulatory T cells and mechanisms of immune system control,” Nature Medicine, vol. 10, no. 8, pp. 801–805, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. A. O'Garra, P. L. Vieira, P. Vieira, and A. E. Goldfeld, “IL-10-producing and naturally occurring CD4+Tregs: limiting collateral damage,” The Journal of Clinical Investigation, vol. 114, no. 10, pp. 1372–1378, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. H. Yi, Y. Zhen, L. Jiang, J. Zheng, and Y. Zhao, “The phenotypic characterization of naturally occurring regulatory CD4+CD25+ T cells,” Cellular & molecular immunology, vol. 3, no. 3, pp. 189–195, 2006. View at Google Scholar · View at Scopus
  72. T. Ito, S. Hanabuchi, Y. H. Wang et al., “Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery,” Immunity, vol. 28, no. 6, pp. 870–880, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Shimizu, S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi, “Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance,” Nature Immunology, vol. 3, no. 2, pp. 135–142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Feuerer, J. A. Hill, D. Mathis, and C. Benoist, “Foxp3+ regulatory T cells: differentiation, specification, subphenotypes,” Nature Immunology, vol. 10, no. 7, pp. 689–695, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. W. Zou, “Regulatory T cells, tumour immunity and immunotherapy,” Nature Reviews Immunology, vol. 6, no. 4, pp. 295–307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. J. D. Fontenot, J. P. Rasmussen, L. M. Williams, J. L. Dooley, A. G. Farr, and A. Y. Rudensky, “Regulatory T cell lineage specification by the forkhead transcription factor Foxp3,” Immunity, vol. 22, no. 3, pp. 329–341, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. T. Sasada, M. Kimura, Y. Yoshida, M. Kanai, and A. Takabayashi, “CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression,” Cancer, vol. 98, no. 5, pp. 1089–1099, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. T. J. Curiel, G. Coukos, L. Zou et al., “Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival,” Nature Medicine, vol. 10, no. 9, pp. 942–949, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Sakaguchi, “Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self,” Nature Immunology, vol. 6, no. 4, pp. 345–352, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. T. R. Malek and A. L. Bayer, “Tolerance, not immunity, crucially depends on IL-2,” Nature Reviews Immunology, vol. 4, no. 9, pp. 665–674, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. S. G. Zheng, J. H. Wang, J. D. Gray, H. Soucier, and D. A. Horwitz, “Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-β, and IL-10,” Journal of Immunology, vol. 172, no. 9, pp. 5213–5221, 2004. View at Google Scholar · View at Scopus
  82. K. Kretschmer, I. Apostolou, D. Hawiger, K. Khazaie, M. C. Nussenzweig, and H. von Boehmer, “Inducing and expanding regulatory T cell populations by foreign antigen,” Nature Immunology, vol. 6, no. 12, pp. 1219–1227, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. L. Steinman, “A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage,” Nature Medicine, vol. 13, no. 2, pp. 139–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Ayyoub, F. Deknuydt, I. Raimbaud et al., “Human memory FOXP3+ Tregs secrete IL-17 ex vivo and constitutively express the TH17 lineage-specific transcription factor RORγt,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 21, pp. 8635–8640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. L. E. Harrington, R. D. Hatton, P. R. Mangan et al., “Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages,” Nature Immunology, vol. 6, no. 11, pp. 1123–1132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. F. Benchetrit, A. Ciree, V. Vives et al., “Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism,” Blood, vol. 99, no. 6, pp. 2114–2121, 2002. View at Publisher · View at Google Scholar · View at Scopus
  87. K. A. Charles, H. Kulbe, R. Soper et al., “The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans,” The Journal of Clinical Investigation, vol. 119, no. 10, pp. 3011–3023, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Bagnato and L. Rosanò, “The endothelin axis in cancer,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 8, pp. 1443–1451, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Nakamura, M. Naruse, K. Naruse, H. Demura, and H. Uemura, “Immunocytochemical localization of endothelin in cultured bovine endothelial cells,” Histochemistry, vol. 94, no. 5, pp. 475–477, 1990. View at Publisher · View at Google Scholar · View at Scopus
  90. E. R. Levin, “Endothelins,” New England Journal of Medicine, vol. 333, no. 6, pp. 356–363, 1995. View at Publisher · View at Google Scholar · View at Scopus
  91. R. J. Buckanovich, A. Facciabene, S. Kim et al., “Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy,” Nature Medicine, vol. 14, no. 1, pp. 28–36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Gohji, S. Kitazawa, H. Tamada, Y. Katsuoka, and M. Nakajima, “Expression of endothelin receptor A associated with prostate cancer progression,” Journal of Urology, vol. 165, no. 3, pp. 1033–1036, 2001. View at Google Scholar · View at Scopus
  93. A. Venuti, D. Salani, V. Manni, F. Poggiali, and A. Bagnato, “Expression of endothelin 1 and endothelin A receptor in HPV-associated cervical carcinoma: new potential targets for anticancer therapy,” The FASEB Journal, vol. 14, no. 14, pp. 2277–2283, 2000. View at Google Scholar
  94. A. Bagnato, A. Cirilli, D. Salani et al., “Growth inhibition of cervix carcinoma cells in vivo by endothelin a receptor blockade,” Cancer Research, vol. 62, no. 22, pp. 6381–6384, 2002. View at Google Scholar · View at Scopus
  95. E. Eltze, M. Bertolin, E. Korsching, P. Wülfing, T. Maggino, and R. Lellé, “Expression and prognostic relevance of endothelin-B receptor in vulvar cancer,” Oncology Reports, vol. 18, no. 2, pp. 305–311, 2007. View at Google Scholar · View at Scopus
  96. Y. Ishida, Y. Agata, K. Shibahara, and T. Honjo, “Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death,” The EMBO Journal, vol. 11, no. 11, pp. 3887–3895, 1992. View at Google Scholar · View at Scopus
  97. H. Nishimura, M. Nose, H. Hiai, N. Minato, and T. Honjo, “Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor,” Immunity, vol. 11, no. 2, pp. 141–151, 1999. View at Publisher · View at Google Scholar · View at Scopus
  98. H. Nishimura, T. Okazaki, Y. Tanaka et al., “Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice,” Science, vol. 291, no. 5502, pp. 319–322, 2001. View at Publisher · View at Google Scholar · View at Scopus
  99. M. E. Keir, M. J. Butte, G. J. Freeman, and A. H. Sharpe, “PD-1 and its ligands in tolerance and immunity,” Annual Review of Immunology, vol. 26, pp. 677–704, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. D. L. Barber, E. J. Wherry, D. Masopust et al., “Restoring function in exhausted CD8 T cells during chronic viral infection,” Nature, vol. 439, no. 7077, pp. 682–687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. G. J. Freeman, A. J. Long, Y. Iwai et al., “Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation,” Journal of Experimental Medicine, vol. 192, no. 7, pp. 1027–1034, 2000. View at Publisher · View at Google Scholar · View at Scopus
  102. T. J. Curiel, S. Wei, H. Dong et al., “Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity,” Nature Medicine, vol. 9, no. 5, pp. 562–567, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. R. V. Parry, J. M. Chemnitz, K. A. Frauwirth et al., “CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms,” Molecular and Cellular Biology, vol. 25, no. 21, pp. 9543–9553, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. C. T. Huang, C. J. Workman, D. Flies et al., “Role of LAG-3 in regulatory T cells,” Immunity, vol. 21, no. 4, pp. 503–513, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. J. P. Medema, J. de Jong, L. T. Peltenburg et al., “Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11515–11520, 2001. View at Publisher · View at Google Scholar · View at Scopus
  106. A. C. Cresswell, K. Sisley, D. Laws, M. A. Parsons, I. G. Rennie, and A. K. Murray, “Reduced expression of TAP-1 and TAP-2 in posterior uveal melanoma is associated with progression to metastatic disease,” Melanoma Research, vol. 11, no. 3, pp. 275–281, 2001. View at Publisher · View at Google Scholar · View at Scopus
  107. D. H. Munn, “Indoleamine 2,3-dioxygenase, tumor-induced tolerance and counter-regulation,” Current Opinion in Immunology, vol. 18, no. 2, pp. 220–225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. U. Ganswindt, F. Paulsen, S. Corvin et al., “Intensity modulated radiotherapy for high risk prostate cancer based on sentinel node SPECT imaging for target volume definition,” BMC Cancer, vol. 5, article 91, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. T. F. Gajewski, Y. Meng, and H. Harlin, “Immune suppression in the tumor microenvironment,” Journal of Immunotherapy, vol. 29, no. 3, pp. 233–240, 2006. View at Publisher · View at Google Scholar
  110. T. F. Gajewski, “Identifying and overcoming immune resistance mechanisms in the melanoma tumor microenvironment,” Clinical Cancer Research, vol. 12, no. 7, part 2, pp. 2326s–2330s, 2006. View at Publisher · View at Google Scholar
  111. R. Ganss, E. Ryschich, E. Klar, B. Arnold, and G. J. Hämmerling, “Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication,” Cancer Research, vol. 62, no. 5, pp. 1462–1470, 2002. View at Google Scholar · View at Scopus
  112. A. A. Lugade, J. P. Moran, S. A. Gerber, R. C. Rose, J. G. Frelinger, and E. M. Lord, “Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor,” Journal of Immunology, vol. 174, no. 12, pp. 7516–7523, 2005. View at Google Scholar
  113. S. Matsumura, B. Wang, N. Kawashima et al., “Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells,” Journal of Immunology, vol. 181, no. 5, pp. 3099–3107, 2008. View at Google Scholar
  114. S. A. Quezada, K. S. Peggs, T. R. Simpson, Y. Shen, D. R. Littman, and J. P. Allison, “Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma,” Journal of Experimental Medicine, vol. 205, no. 9, pp. 2125–2138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. M. A. Khan and A. W. Partin, “Endothelin-a receptor antagonists and advanced prostate cancer,” Reviews in Urology, vol. 6, no. 1, pp. 47–48, 2004. View at Google Scholar
  116. A. Akhavan, K. H. McHugh, G. Guruli et al., “Endothelin receptor A blockade enhances taxane effects in prostate cancer,” Neoplasia, vol. 8, no. 9, pp. 725–732, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. L. E. Kandalaft, A. Facciabene, R. J. Buckanovich, and G. Coukos, “Endothelin B receptor, a new target in cancer immune therapy,” Clinical Cancer Research, vol. 15, no. 14, pp. 4521–4528, 2009. View at Publisher · View at Google Scholar
  118. A. Bagnato, L. Rosanò, F. Spinella, V. Di Castro, R. Tecce, and P. G. Natali, “Endothelin B receptor blockade inhibits dynamics of cell interactions and communications in melanoma cell progression,” Cancer Research, vol. 64, no. 4, pp. 1436–1443, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. A. Löffler, P. Kufer, R. Lutterbüse et al., “A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes,” Blood, vol. 95, no. 6, pp. 2098–2103, 2000. View at Google Scholar
  120. A. Marmé, G. Strauass, G. Bastert, E. M. Grischke, and G. Moldenhauer, “Intraperitoneal bispecific antibody (HEA125XOKT3) therapy inhibits malignant ascites production in advanced ovarian carcinoma,” International Journal of Cancer, vol. 101, no. 2, pp. 183–189, 2002. View at Publisher · View at Google Scholar
  121. P. T. Daniel, A. Kroidl, J. Kopp et al., “Immunotherapy of B-cell lymphoma with CD3x19 bispecific antibodies: costimulation via CD28 prevents 'veto' apoptosis of antibody-targeted cytotoxic T cells,” Blood, vol. 92, no. 12, pp. 4750–4757, 1998. View at Google Scholar · View at Scopus
  122. S. Haldar, N. Jena, and C. M. Croce, “Inactivation of Bcl-2 by phosphorylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 10, pp. 4507–4511, 1995. View at Google Scholar · View at Scopus
  123. A. E. Dirkx, M. G. Oude Egbrink, K. Castermans et al., “Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors,” The FASEB Journal, vol. 20, no. 6, pp. 621–630, 2006. View at Publisher · View at Google Scholar
  124. S. Nagaraj, J. I. Youn, H. Weber et al., “Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer,” Clinical Cancer Research, vol. 16, no. 6, pp. 1812–1823, 2010. View at Publisher · View at Google Scholar
  125. T. Sasahira, T. Sasaki, and H. Kuniyasu, “Interleukin-15 and transforming growth factor α are associated with depletion of tumor-associated macrophages in colon cancer,” Journal of Experimental and Clinical Cancer Research, vol. 24, no. 1, pp. 69–74, 2005. View at Google Scholar · View at Scopus
  126. S. Gazzaniga, A. I. Bravo, A. Guglielmotti et al., “Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft,” The Journal of Investigative Dermatology, vol. 127, no. 8, pp. 2031–2041, 2007. View at Publisher · View at Google Scholar · View at Scopus
  127. S. Lewen, H. Zhou, H. D. Hu et al., “A Legumain-based minigene vaccine targets the tumor stroma and suppresses breast cancer growth and angiogenesis,” Cancer Immunology, Immunotherapy, vol. 57, no. 4, pp. 507–515, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. S. Zeisberger, B. Odermatt, C. Marty, A. H. M. Zehnder-Fjällman, K. Ballmer-Hofer, and R. A. Schwendener, “Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach,” British Journal of Cancer, vol. 95, no. 3, pp. 272–281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. E. Giraudo, M. Inoue, and D. Hanahan, “An amino-bisphosphonate targets MMP-9 - Expressing macrophages and angiogenesis to impair cervical carcinogenesis,” The Journal of Clinical Investigation, vol. 114, no. 5, pp. 623–633, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. J. S. Ko, A. H. Zea, B. I. Rini et al., “Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients,” Clinical Cancer Research, vol. 15, no. 6, pp. 2148–2157, 2009. View at Publisher · View at Google Scholar
  131. J. S. Ko, P. Rayman, J. Ireland et al., “Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained,” Cancer Research, vol. 70, no. 9, pp. 3526–3536, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. J. Vincent, G. Mignot, F. Chalmin et al., “5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity,” Cancer Research, vol. 70, no. 8, pp. 3052–3061, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. H. K. Le, L. Graham, E. Cha, J. K. Morales, M. H. Manjili, and H. D. Bear, “Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice,” International Immunopharmacology, vol. 9, no. 7-8, pp. 900–909, 2009. View at Publisher · View at Google Scholar
  134. J. Shimizu, S. Yamazaki, and S. Sakaguchi, “Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity,” Journal of Immunology, vol. 163, no. 10, pp. 5211–5218, 1999. View at Google Scholar
  135. K. Klages, C. T. Mayer, K. Lahl et al., “Selective depletion of Foxp3+ regulatory T cells improves effective therapeutic vaccination against established melanoma,” Cancer Research, vol. 70, no. 20, pp. 7788–7799, 2010. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Walczak, J. Regts, A. J. van Oosterhout et al., “Role of regulatory T-cells in immunization strategies involving a recombinant alphavirus vector system,” Antiviral Therapy, vol. 16, no. 2, pp. 207–218, 2011. View at Publisher · View at Google Scholar
  137. T. Takahashi, T. Tagami, S. Yamazaki et al., “Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4,” Journal of Experimental Medicine, vol. 192, no. 2, pp. 303–310, 2000. View at Publisher · View at Google Scholar · View at Scopus
  138. J. Shimizu, S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi, “Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance,” Nature Immunology, vol. 3, no. 2, pp. 135–142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  139. G. Peng, Z. Guo, Y. Kiniwa et al., “Immunology: toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function,” Science, vol. 309, no. 5739, pp. 1380–1384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. A. H. Zea, P. C. Rodriguez, M. B. Atkins et al., “Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion,” Cancer Research, vol. 65, no. 8, pp. 3044–3048, 2005. View at Google Scholar · View at Scopus
  141. J. E. Talmadge, K. C. Hood, L. C. Zobel, L. R. Shafer, M. Coles, and B. Toth, “Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion,” International Immunopharmacology, vol. 7, no. 2, pp. 140–151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. V. Bronte, T. Kasic, G. Gri et al., “Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers,” Journal of Experimental Medicine, vol. 201, no. 8, pp. 1257–1268, 2005. View at Publisher · View at Google Scholar · View at Scopus
  143. D. I. Gabrilovich, M. P. Velders, E. M. Sotomayor, and W. M. Kast, “Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells,” Journal of Immunology, vol. 166, no. 9, pp. 5398–5406, 2001. View at Google Scholar
  144. H. Song, R. Wang, S. Wang, and J. Lin, “A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 13, pp. 4700–4705, 2005. View at Publisher · View at Google Scholar · View at Scopus
  145. Y. Iwai, S. Terawaki, and T. Honjo, “PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells,” International Immunology, vol. 17, no. 2, pp. 133–144, 2005. View at Publisher · View at Google Scholar · View at Scopus
  146. S. Pilon-Thomas, A. Mackay, N. Vohra, and J. J. Mulé, “Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma,” Journal of Immunology, vol. 184, no. 7, pp. 3442–3449, 2010. View at Publisher · View at Google Scholar
  147. J. F. Grosso, C. C. Kelleher, T. J. Harris et al., “LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems,” The Journal of Clinical Investigation, vol. 117, no. 11, pp. 3383–3392, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. J. F. Grosso, M. V. Goldberg, D. Getnet et al., “Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells,” Journal of Immunology, vol. 182, no. 11, pp. 6659–6669, 2009. View at Publisher · View at Google Scholar
  149. Q. Zhang, X. Yang, M. Pins et al., “Adoptive transfer of tumor-reactive transforming growth factor-β-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer,” Cancer Research, vol. 65, no. 5, pp. 1761–1769, 2005. View at Publisher · View at Google Scholar · View at Scopus
  150. F. L. Wang, W. J. Qin, W. H. Wen et al., “TGF-β insensitive dendritic cells: an efficient vaccine for murine prostate cancer,” Cancer Immunology, Immunotherapy, vol. 56, no. 11, pp. 1785–1793, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. C. Uyttenhove, L. Pilotte, I. Théate et al., “Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase,” Nature Medicine, vol. 9, no. 10, pp. 1269–1274, 2003. View at Publisher · View at Google Scholar · View at Scopus
  152. D. H. Munn, M. D. Sharma, D. Hou et al., “Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes,” The Journal of Clinical Investigation, vol. 114, no. 2, pp. 280–290, 2004. View at Publisher · View at Google Scholar · View at Scopus
  153. C. Yee, “Adoptive T cell therapy: addressing challenges in cancer immunotherapy,” Journal of Translational Medicine, vol. 3, article 17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  154. C. H. June, “Principles of adoptive T cell cancer therapy,” The Journal of Clinical Investigation, vol. 117, no. 5, pp. 1204–1212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  155. C. H. June, “Adoptive T cell therapy for cancer in the clinic,” The Journal of Clinical Investigation, vol. 117, no. 6, pp. 1466–1476, 2007. View at Publisher · View at Google Scholar · View at Scopus
  156. S. A. Rosenberg, N. P. Restifo, J. C. Yang, R. A. Morgan, and M. E. Dudley, “Adoptive cell transfer: a clinical path to effective cancer immunotherapy,” Nature Reviews Cancer, vol. 8, no. 4, pp. 299–308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  157. M. Khattar, W. Chen, and S. M. Stepkowski, “Expanding and converting regulatory T cells: a horizon for immunotherapy,” Archivum Immunologiae et Therapiae Experimentalis, vol. 57, no. 3, pp. 199–204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. L. A. Johnson, R. A. Morgan, M. E. Dudley et al., “Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen,” Blood, vol. 114, no. 3, pp. 535–546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  159. L. Gattinoni, S. E. Finkelstein, C. A. Klebanoff et al., “Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells,” Journal of Experimental Medicine, vol. 202, no. 7, pp. 907–912, 2005. View at Publisher · View at Google Scholar · View at Scopus
  160. L. A. Johnson, B. Heemskerk, D. J. Powell Jr. et al., “Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes,” Journal of Immunology, vol. 177, no. 9, pp. 6548–6559, 2006. View at Google Scholar
  161. M. E. Dudley, J. C. Yang, R. Sherry et al., “Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens,” Journal of Clinical Oncology, vol. 26, no. 32, pp. 5233–5239, 2008. View at Publisher · View at Google Scholar
  162. C. W. Tseng, C. Trimble, Q. Zeng et al., “Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts,” Cancer Immunology, Immunotherapy, vol. 58, no. 5, pp. 737–748, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. N. Katsumata, M. Yasuda, F. Takahashi et al., “Dose-dense paclitaxel once a week in combination with carboplatin every 3 weeks for advanced ovarian cancer: a phase 3, open-label, randomised controlled trial,” The Lancet, vol. 374, no. 9698, pp. 1331–1338, 2009. View at Publisher · View at Google Scholar
  164. J. Taieb, N. Chaput, N. Schartz et al., “Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines,” Journal of Immunology, vol. 176, no. 5, pp. 2722–2729, 2006. View at Google Scholar
  165. S. Viaud, C. Flament, M. Zoubir et al., “Cyclophosphamide induces differentiation of Th17 cells in cancer patients,” Cancer Research, vol. 71, no. 3, pp. 661–665, 2011. View at Publisher · View at Google Scholar
  166. D. M. Parkin, “The global health burden of infection-associated cancers in the year 2002,” International Journal of Cancer, vol. 118, no. 12, pp. 3030–3044, 2006. View at Publisher · View at Google Scholar · View at Scopus
  167. P. W. Kantoff, C. S. Higano, N. D. Shore et al., “Sipuleucel-T immunotherapy for castration-resistant prostate cancer,” New England Journal of Medicine, vol. 363, no. 5, pp. 411–422, 2010. View at Publisher · View at Google Scholar
  168. E. J. Small, P. F. Schellhammer, C. S. Higano et al., “Placebo-controlled phase III trial of immunologic therapy with Sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer,” Journal of Clinical Oncology, vol. 24, no. 19, pp. 3089–3094, 2006. View at Publisher · View at Google Scholar
  169. T. Daemen, J. Regts, M. Holtrop, and J. Wilschut, “Immunization strategy against cervical cancer involving an alphavirus vector expressing high levels of a stable fusion protein of human papillomavirus 16 E6 and E7,” Gene Therapy, vol. 9, no. 2, pp. 85–94, 2002. View at Publisher · View at Google Scholar · View at Scopus
  170. T. Daemen, A. Riezebos-Brilman, L. Bungener, J. Regts, B. Dontje, and J. Wilschut, “Eradication of established HPV16-transformed tumours after immunisation with recombinant Semliki Forest virus expressing a fusion protein of E6 and E7,” Vaccine, vol. 21, no. 11-12, pp. 1082–1088, 2003. View at Publisher · View at Google Scholar · View at Scopus
  171. A. Riezebos-Brilman, J. Regts, E. J. Freyschmidt, B. Dontje, J. Wilschut, and T. Daemen, “Induction of human papilloma virus E6/E7-specific cytotoxic T-lymphocyte activity in immune-tolerant, E6/E7-transgenic mice,” Gene Therapy, vol. 12, no. 18, pp. 1410–1414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  172. A. Riezebos-Brilman, M. Walczak, J. Regts et al., “A comparative study on the immunotherapeutic efficacy of recombinant Semliki Forest virus and adenovirus vector systems in a murine model for cervical cancer,” Gene Therapy, vol. 14, no. 24, pp. 1695–1704, 2007. View at Publisher · View at Google Scholar · View at Scopus
  173. A. Riezebos-Brilman, J. Regts, M. Chen, J. Wilschut, and T. Daemen, “Augmentation of alphavirus vector-induced human papilloma virus-specific immune and anti-tumour responses by co-expression of interleukin-12,” Vaccine, vol. 27, no. 5, pp. 701–707, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. A. de Mare, A. J. Lambeck, J. Regts et al., “Viral vector-based prime-boost immunization regimens: a possible involvement of T-cell competition,” Gene Therapy, vol. 15, no. 6, pp. 393–403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  175. M. Walczak, A. de Mare, A. Riezebos-Brilman et al., “Heterologous prime-boost immunizations with a virosomal and an alphavirus replicon vaccine,” Molecular Pharmaceutics, vol. 8, no. 1, pp. 65–77, 2011. View at Publisher · View at Google Scholar